Made to measure: smart natural resources management approaches

Coffee-banana intercropping. Photo by P. van Asten, IITA.
Coffee-banana intercropping. Photo by P. van Asten, IITA.

Coffee and banana yields in the East African highlands are often only 10 to 30% of those achieved in commercial farms in Latin America and Asia. This is the result of a mixture of biotic stresses on the crops such as pests, diseases, and weeds, and abiotic constraints such as poor soil quality and drought.

Poor crop management practices that do not sufficiently address these constraints prevent farmers from reaping maximum benefits from their efforts.

However, the importance of these yield-limiting factors differs from region to region. The natural resources management (NRM) approach therefore starts with identifying the gap between the actual, attainable, and potential yields for each location.

Diagnostic surveys and analytical tools such as the boundary line analysis are used to rank and quantify the causes of low yields. This then guides the development of tailor-made measures and actions for farmers.

Smart use of mineral fertilizer and organic matter
Poor soils are one major cause of low yields in the East African highlands. Much of Africa’s soils are old and poor, situated on very old continental plates. Only a few places have soils that still have substantial nutrient stocks, such as those derived from young volcanic material and metamorphic rocks.

Years and years of soil erosion and poor farming methods that mine minerals have worsened the situation.

IITA is working with farmers to combine organic manure and mineral fertilizer to replenish soil nutrients to meet the needs of banana and coffee.

Piet van Asten, IITA systems agronomist based in Uganda, says the approach stresses the judicious use of mineral fertilizer that is moderate in quantity, applied at the right time and in the right way, and combined with locally available organic matter.

“The combination of fertilizers and organic matter provides much-needed additional nutrients that are efficiently used up by the crops. The organic matter helps to retain mineral fertilizers applied in the topsoil and reduces losses from leaching,” he says. “It also improves the soil physical properties which help to retain soil humidity and control the temperature. Plants thrive in such humid and temperate environments as the roots are better able to take up nutrients.”

Poster on banana fertilizer recommendations for Uganda. Courtesy of P. van Asten, IITA.
Poster on banana fertilizer recommendations for Uganda. Courtesy of P. van Asten, IITA.

Sources of local organic matter are mulch, urine, manure, and compost.

Research has shown that adding mineral fertilizers and mulch to both coffee and banana nearly doubles their yields. However, the fertilizer type and dose have to supply the nutrients that are lacking.

Through mapping soil and plant nutrient status, IITA identified the missing nutrients in each region. Subsequently, it developed region-specific recommendations for using fertilizer and organic mulch in parts of Uganda.

Training materials were also developed to teach farmers how to identify nutrient deficiencies in their own farms by observing plant leaves. This should ultimately help them to localize their fertilizer needs down to the farm level.

Halting and preventing soil erosion by placing contour bunds stabilized by forage/mulch grasses and leguminous plants are also important to conserve and improve soil quality.

Smart intercropping systems
IITA has been working on promoting the intercropping of banana/plantain and coffee as research has clearly shown that intercropping works better than monocropping either crop.

Coffee, a shade-loving plant, performs well when grown under banana/plantain. Research findings showed that creating space for the banana/plantain does not reduce the yield of coffee but instead, the farmer gets bonus income from the banana.

Such intercropping systems, says van Asten, spread the socioeconomic risks of farmers as they become less vulnerable to the price fluctuations of a single crop.

“The two intercrops provide farmers with permanent piecemeal harvests from banana and annual or biannual cash booms from coffee,” he said.

Intercropping has other benefits. It leads to sharing of inputs, such as fertilizers purchased through the cash crop system, such as coffee farmers’ cooperatives. It also improves fertilizer-use efficiency, as fertilizer applied to the cash crop also benefits the food crop.

Coffee plants perform better when grown under the shade of banana plants. Photo by P. van Asten, IITA.
Coffee plants perform better when grown under the shade of banana plants. Photo by P. van Asten, IITA.

Intercropping improves the biophysical efficiency of the systems by providing better and more permanent canopy and soil cover that reduce erosion. It improves soil organic carbon stocks (carbon sequestration) through the biomass produced.

Another benefit, says van Asten, is that intercropping can sometimes increase the quality of some crops. For instance, under suboptimal growing conditions, shade-grown coffee is often of better quality and thus could fetch more money on the market.

Linking to input and output markets
In a study of the factors that limit farmers’ usage of mineral fertilizers for their banana plants, Uganda farmers cited lack of access as one constraint. Moreover, they said it was not available in smaller packaging and more affordable sizes. IITA is working to encourage farmer cooperatives that are organized around postharvest handling, sorting, and bulking to organize the supply of inputs such as fertilizer for their members.

According to van Asten, cooperatives have better access to input/output markets and improved powers of negotiation. They have improved access to market information, bulking and storage facilities, savings and credit schemes through collaboration, and agreements with input/output dealers. They can also facilitate the exploration of niche markets through the certification of products in terms of quality, production, and techniques.

Smart extension services
To meet the information needs of farmers, IITA and partners are exploring options to make location-specific information accessible. This includes the use of extension publications, videos, and mobile phone services.

Farmer detrashing banana intercropped with coffee. Photo by P. van Asten, IITA.
Farmer detrashing banana intercropped with coffee. Photo by P. van Asten, IITA.

Together with the Grameen Foundation, IITA is exploring how information can be tailored to the location of the farmer through a (decision-tree) series of questions. The more information a farmer can provide, the more precise the recommendations will be.

The NRM work on coffee and banana shows that there are practical, readily available measures that farmers can use to increase yield and contribute towards the fight against poverty and hunger. However, they have to be region- and crop-specific for maximum impact.

“For all these measures to be successful, they must start with using clean and resistant planting materials. Investing in fertilizers for use on diseased plants is a futile exercise,” concludes van Asten.

Thomas Dubois: Young scientist on the rise

Thomas Dubois, IITA
Thomas Dubois, IITA

Thomas Dubois joined IITA in 2003 to manage the German Federal Ministry for Economic Cooperation and Development (BMZ)-funded regional biocontrol project for banana, based in Uganda. This project has now made significant progress: banana infected with certain strains of endophytic fungi grow more vigorously and are better protected against pests and diseases. The development of this novel “bioprotection” is an exciting research theme that has the potential to revolutionize current thinking on biocontrol. Current focus of this project is to optimize inoculation techniques and scale up activities with commercial producers of tissue-cultured (TC) plants as part of a recently funded Eastern African Programme and Research Network for Biotechnology, Biosafety and Biotechnology Policy Development (BIO-EARN) project in Kenya and Uganda.

In 2006, Thomas received the prestigious CGIAR Young Scientist Award. At present he is heading a BMZ project on improving market pathways for TC banana centered on commercial TC producers and nursery distribution centers. He is also spearheading the 2008 International Banana Conference in Mombasa, Kenya, as Chair of the Organizing Committee.

How did you come to IITA?
I studied bio-engineering first and then some foreign exchanges spurred my international ambitions. After my studies, in 1998, I was placed with IITA in Onne, southeast Nigeria. I absolutely fell in love with the then cowboy attitudes: nothing beats eating goat head, listening to Afropop in between oilrigs and blown up tankers! I liked the applied work, screening banana plants for nematode resistance, working under the supervision of Abdou Tenkouano and the late Paul Speijer. While I was at Onne, I was accepted at Cornell University to do my PhD studies in Insect Pathology. As I told Lukas Brader, the DG at that time, “I will be back.” After my PhD studies I was quickly involved in a fairly high-profile project with the United States Department of Agriculture, combating a devastating invasive insect species in the northern US; I traveled to China every year for prolonged periods of time. I toyed with the idea of entering Business School and tried to get into private industry. I settled with management consulting firms, using the Ivy League degree as leverage. I tried to get back into the CGIAR system and landed an 8-month stint with IITA in Uganda in 2003. This was a short project related to the use of endophytes, with no job security but ideal to get my foot in the door. I have been at IITA ever since.

What are some of your memorable experiences in research in the field or in the lab?
I like the applied and hands-on work. You can get much more done with a large dedicated team of staff, sometimes with less access to good infrastructure and facilities. I had to play farm manager for more than a year, doing activities from supplying water, fuel, and satellite dishes to keep the station running, to chasing away cows from encroaching the research fields in my spare time.

What are your realizations on the job?
I have come to appreciate several important realizations. First of all comes focus. It is easy to be carried away and drift into the development aspect of things. We are first and foremost scientists, on the applied side of science, publishing our work through peer-reviewed journals. It should be up to partner organizations to feed high-tech science upstream or to implement the work downstream. So choosing the right partners is essential. Secondly, teamwork is important. I started to fully appreciate this fairly late. Competition is natural in low quantities but, by definition, has no place in an institution that aims to do Research to nourish Africa. By working synergistically as a team and sometimes reaching out to other “competitor” organizations you would be surprised at what can be achieved in a short time and how the relationship can be swiftly turned into fruitful collaboration. Thirdly, at IITA, the sky seems to be the limit but sometimes you have to let go. One person simply cannot run two large international projects, write some more, fly to DR Congo to help with restructuring the agricultural sector, correct PhD theses, be a webmaster, and run a massive conference at the same time. My workload is insane but it is partly my fault.

What are your future plans?
In the immediate future, I would focus on my project on improving market pathways for TC banana centered on commercial TC producers and nursery distribution centers. Also, commercialization of the technology with private enterprises—this is what the BIO-EARN project is trying to do. At some point later, I hope to leave science and secure a managerial position with more job security as well. Deep down I know I am not a scientist “pure sang”. Moving on to the bigger scheme of things can be anything, ranging from research management, policy, advocacy, consultancy to donor relations.

Dubois examining a banana plant. Photo by IITA
Dubois examining a banana plant. Photo by IITA

Any advice for colleagues?
I am among the youngest at IITA so I should be receiving advice from others! A strong focus has been on mentoring students and I would hope that some colleagues would train more students. I have been supervising over 25 students in the last 5 years, both those from within Africa and European-based MSc students who do their research at IITA-Uganda. Benefits are manifold for them and IITA. Secondly, I think IITA folk could benefit if they “sell” themselves a bit more, through radio, TV, websites, and the popular press. Benefits include changing donor conceptions and misconceptions, putting science in the forefront, and ultimately benefiting farmers. Thirdly, it has helped me to think a lot out of the box and be a generalist. I came as an entomologist with a title of “biocontrol specialist”. Now I am running a socioeconomic project entirely focused on market pathways for banana seed systems. One could look out of the box for good private sector players or partners. This is essential, in my opinion, for long-term sustainability.

What is your dream for Africa?
I hope Africa will, at some point, be weaned off the many donor agencies, volunteering organizations, and NGOs that seem to be becoming a sustainable big-bucket business rather than a means to an end. A conducive climate for private sector development, together with good governance, is what I wish for sub-Saharan Africa.

Leena Tripathi: Looking after the welfare of smallholder banana growers

Leena Tripathi was born and grew up in India. She gained a PhD in Plant Molecular Biology from the National Botanical Institute, Lucknow, after completing an MSc in Molecular Biology and Biotechnology at G.B. Pant University of Agriculture and Technology, Pantnagar, India.

She joined IITA in 2000 and worked first in Nigeria and currently in Uganda where her primary research focuses on the development of transgenic Musa spp. with disease and pest resistance. She has established strong links with national and regional partners, and advanced labs. She is also Guest Faculty at the United Nations Industrial Development Organization (UNIDO) for biosafety courses.

Please describe your research work.
Since 2000, I have been developing transgenic banana and plantain resistant to pests and diseases. Currently, I am leading projects on producing bananas resistant to Xanthomonas wilt using the transgenic approach. I am also involved in capacity building in biotechnology and biosafety. I have trained several African scientists in genetic transformation and tissue culture. I have assisted in building capacity on genetically modified organism (GMO) detection and biosafety in East Africa by training students and national scientists on banana transformation and molecular biology. And I would like to acknowledge the strong financial support from donors such as Gatsby Charitable Foundation, African Agricultural Technology Foundation (AATF), US Agency for International Development, and the UK Department for International Development (DFID); and IITA of course.

Why did you choose to work in Africa?
Africa has missed the Green Revolution but should not miss the Gene Revolution. For this it needs human capacity in biotechnology that will help to accomplish things that conventional plant breeding could never do. The public needs to be better informed about the importance of biotechnology in food production.

What is the importance of transgenic technologies in banana improvement?
Many pests and diseases significantly affect banana cultivation and cause crop losses worldwide. Development of disease-resistant banana by conventional breeding remains difficult for various technical reasons. Transgenic technologies are the most cost-effective approach. There are enormous potentials for genetic manipulation using appropriate transgenes from other plants to achieve objectives in a far shorter time. It may also be possible to incorporate other characteristics such as drought tolerance, thus extending the geographical spread of production.

How do you demystify or explain a concept like biotechnology to lay audiences?
People think that biotechnology is just genetic modification (GM) technology. Contrary to its name, biotechnology is not a single technology; it is a group of technologies that uses biological systems, living organisms, or their derivatives, to make or modify products or processes for specific use. This includes recombinant DNA technology, genetic engineering, GM foods, biopharmaceuticals, bioremediation, and more.

Biotechnology is not new; it has flourished since prehistoric times. When the first human beings realized that they could plant their own crops and breed their own animals, they learned to use biotechnology. The discovery that fruit juices fermented into wine, or that milk could be converted into cheese or yogurt, or that beer could be made by fermenting solutions of malt and hops, started the study of biotechnology. When the first bakers found that they could make soft, spongy bread rather than a firm, thin cracker, they were acting as fledgling biotechnologists.

“Modern” biotechnology derives from techniques discovered only in the last 20 years. These include the ability to cut and stitch DNA, to move DNA and genes from one organism to another, and to persuade the new gene in this new organism, that is to make new proteins. Genetic engineering technology is a branch of modern biotechnology and involves the transfer of gene(s) from one organism to another to create a new species of crops, animals, or microorganism. Modern biotechnology has offered opportunities to produce more nutritious and better tasting foods, higher crop yields, and plants that are naturally protected from disease and insects.

What have you learned on the job?
I joined IITA as a biotechnologist with plenty of experience in research but not in the field. Working at IITA has been overwhelmingly positive. I have gained experience in both research and administration. I have learned to appreciate the benefits of working in multidisciplinary and multicultural teams and of linking research to farmers in the field. I can now write successful project proposals, get funding, lead projects, and disseminate results to national partners and finally to farmers. Good communication skills are essential for successful research. One needs to be a good team worker and establish strong and successful partnerships as we are doing at IITA-Uganda. When I was relocated here, I realized the situation was very different. IITA in Ibadan has facilities but in Uganda, IITA facilities are based within a national partner, the National Agricultural Research Organization. I wanted to learn quickly from the experiences of others so I talked to colleagues about their work and successes and to national scientists about their expectations. I learned quickly.

Any advice for IITA colleagues?
IITA scientists should be committed to provide strong leadership in the key research areas to ensure scientific excellence and the quality of products. They should work applying “new science” to enhance food security and income generation for resource-poor farmers.

What are your future research plans?
I want to evaluate the disease resistance of banana varieties in the field, evaluate transgenic plants in the confined field for efficacy against Xanthomonas wilt disease, with the University of Leeds develop nematode-resistant plantains, and develop varieties with multiple disease resistance by integrating several genes with different targets or modes of action into the plant genome. I also want to train more national staff/students to build capacity in the region.

What is your formula for success?
The addition and sometimes multiplication of five key elements: vision, strategy, confidence, hard work, and learning. I am focused and have a clear vision for my research, based on project outputs. I frame strategy with clear goals. I follow the strategy with my group members and work hard to achieve the goals. At each step I identify problems and learn to solve or avoid them so that the group moves smoothly and fast to achieve the goals. I set the goals for my group at the start of each year. Everyone works extra hours to achieve group goals. I do not hesitate to seek advice and suggestions from experts, superiors, and collaborators to move things efficiently. Support is very important. I have benefited from support and encouragement from my superiors, higher IITA management, donors, collaborators, and from family. IITA nominated me for the CGIAR Young Scientist award in 2005 and gave me their Top Scientist award, based on my research achievements.