30 years R4D in soybean: what’s next?

Forty years ago, only a handful of farmers in Benue State, middle belt of Nigeria were growing soybean. The crop was generally thought more suitable for large-scale commercial growing and industrial processing. But not anymore.

This golden bean is grown in the farms of resource-poor smallholders in the Guinea savannas of Nigeria and other parts of sub-Saharan Africa.

“In the 1970s, there was little interest and effort in Africa to grow and improve soybean because of extremely low yields and seed viability, poor nodulation, high shattering rate, and limited postharvest use,” reported Dr Hailu Tefera, soybean breeder and OIC of IITA-Malawi, on 30 years of IITA soybean breeding work.

Breeding gains

When IITA started improvement research in 1974, the average yield per hectare in Africa was 660 kg/ha. Total production was only 0.2 million tons. Thirty years later, using IITA-developed varieties, the average yield in West African countries increased by more than 50%, and 67% in the whole of Africa, equivalent to 1.1 t/ha over 20 years of breeding effort. That is a genetic gain of more than 2% per year in grain yield.

Twenty-one African countries now produce soybean. Nigeria has the highest 6-year (2000-05) average production of 486,000 tons on an area of 553,260 hectares, followed by South Africa with 205,270 tons from 122,870 hectares, and Uganda with 155,500 tons from 139,500 hectares.

Soybean production increased dramatically, Tefera said, as locally adapted tropical germplasm was developed and distributed to other African countries. In Nigeria, the soybean industry quickly advanced. Integrated processing, use, and marketing aspects followed efforts to develop improved cultivars. This is a testament to IITA’s research for development (R4D) in soybean that produced high-yielding and stable varieties, tolerant or resistant to biotic and abiotic constraints, and promoted processing and use.

Community impact

In 1985, to improve nutrition and to create demand, IITA began the development of small-scale and home-level food processing technologies. A study funded by the International Development Research Centre (IDRC) Canada with the Institute for Agricultural Research and Training (IART), Ibadan, Nigeria, after 3 years found that soybean had been successfully used to increase the protein content of traditional foods. New products—flour, milk, baby food—had been developed and introduced. Small-scale processing machines were introduced. Over 25,000 people in the rural areas were trained, with training project sites increasing from 3 to 27. The number of farmers growing soybean in target villages increased by 35%. Sales of grain and flour soybean increased in Nigerian markets.

Phase 2 of the project covered all Nigeria with several national institutions such as IART; National Cereals Research Institute, Badeggi; National Agricultural Extension Research and Liaison Services, Zaria; and the University of Nigeria at Nsukka. An assessment of four states in 1992 showed wide commercialization.

Markets had increased from 2 in 1987 to 42 in 1993. The number of retailers ballooned from 4 in 1987 to 824 in 1993. In Benue State, more women were involved in soybean production. New IITA varieties were widely adopted and grown by 9% of farmers in 1989 to 75% in 1997 on 30% of the area planted to soybean in the state.

So far, Tefera reports, some 17 IITA-bred tropical soybean varieties have been released by national agricultural research and extension systems (NARES) of several West and Central African countries (Nigeria, Benin, Ghana, Democratic Republic of Congo, Togo),  and Uganda. These show considerable increases in grain and fodder yields, improving soil fertility in the savannas and enhancing the yields of subsequent crops such as maize and sorghum. Since 2000, however, support for soybean research among the NARES has declined. On-farm variety testing and releases is at a standstill, except for MAKSOY 1N, an early maturing variety resistant to rust, a destructive foliar disease, in Uganda.

Potential for expansion

Soybean growing suitability map. IITA
Soybean growing suitability map. IITA

IITA recently expanded breeding of its West Africa-bred varieties to Southern Africa, where cultivation by small-scale farmers is rising because of less susceptibility to pests and disease, better grain storage quality compared with other legumes, large leaf biomass, and a secure commercial market. Commercial soybean farms are now found in South Africa, Zimbabwe, and Zambia.

In South Africa, the Agricultural Research Council develops cultivars with better adaptation and seed quality, high yield, resistance to nematodes and rust, and tolerance to low night temperatures. It is also developing genetically modified drought-tolerant soybean—the first soybean GMO in South Africa. Twenty-one members of the South African National Seed Organization produced 2,879 tons of soybean seed in 2006-07.

SeedCo in Zimbabwe breeds varieties for the local market and other countries in the region; these are resistant to red leaf blotch and frogeye disease. It produces inoculants that go with the varieties. The Zambia Seed Company produces, processes, and markets seeds of various crops including soybean and is considering testing IITA-developed varieties under Zambian conditions.

“Soybean improvement efforts in the past focused on helping subsistence farming,” said Tefera. “Currently many African countries are practicing market-oriented agriculture to increase farmers’ income and reduce poverty. Soybean improvement work at IITA should consider technologies for use by farmers of different capacities.”

According to FAO, Africa spent US$1 billion in 2004 to import soybean and soy oil. Of this, US$752 million was for soybean oil and US$254 million was for soybean grain/meal. Countries such as South Africa, Malawi, Zimbabwe, and Zambia in aggregate produce 33.4% of Africa’s total production.

Producing enough in the region and adding value can save millions spent on imports for other development activities, he further added. There are also export possibilities to Europe and Japan as soybean grown in Africa is mostly non-GMO.
Favorable government policies are needed to develop the soybean industry in Africa. In Brazil and Argentina in the 1990s, economic reforms created favorable conditions for agricultural investment, production, and exports. Research alone was not the driving force for the soybean industry’s impressive growth there.

Market-oriented policy changes included elimination of export taxes, lifted restrictions on import of agricultural inputs, privatization of marketing and transportation infrastructure including state-owned grain elevators, port facilities, and railroads. Farmers also invested heavily in new technologies that improve yields, accelerate planting and harvesting, and facilitate delivery.

“Achieving these targets requires the efforts of various players in research, production, and marketing,” Tefera concluded, “and should consider technological, institutional, and organizational interventions in both the supply and demand sides.”