NAQS: IITA contributes to our effectiveness

Olufunke Awosusi is a Senior Plant Quarantine Officer with the Nigeria Agricultural Quarantine Service (NAQS) in the Federal Ministry of Agriculture and Rural Development. NAQS is charged with the responsibility of protecting the Nigerian agricultural economy from the attacks of pests, especially “foreign” pests, and also enhancing agricultural trade through export inspection and certification. Below are excerpts from an interview with Godwin Atser on the role of the NAQS and the collaboration with IITA.

Olufunke Awosusi, NAQS
Olufunke Awosusi, NAQS

What is the role of NAQS?
The NAQS evolved from the former Plant Quarantine Service. It was established in recognition of the fact that agricultural quarantine is the control of the introduction and spread of pests and diseases by means of legislation and as a result of the country’s problems within a decade before independence with the introduction of cocoa and maize pests. The cocoa industry almost collapsed; plantations were destroyed; and disease-resistant cocoa varieties were handed to farmers for replanting. This cost the Government a colossal amount. For maize, it took the concerted efforts of several West African nations coming together to revive production in the region.

NAQS was created to harmonize the quarantine of plant, veterinary, and aquatic (fisheries) resources in Nigeria to promote and regulate sanitary (animal and fisheries health) and phytosanitary (plant health) measures in connection with the import and export of agricultural products with a view to minimizing the risk to the agricultural economy, food safety, and the environment.

The main objective of NAQS is to prevent the introduction, establishment, and spread of animal and zoonotic diseases and pests of plants and fisheries including their products. NAQS also undertakes emergency protocol to control or manage new pest incursion or diseases outbreak in collaboration with key stakeholders.

What is the situation with NAQS today?
The standards have improved drastically. Today NAQS has improved personnel who are more skillful and trained in pest diagnosis stationed in the entry and exit points in the country. We have had improvements in diagnostic facilities and this is perhaps one of the reasons why some of the exotic pests have been kept outside our borders.

What is your assessment of quarantine in Africa?
Africa has witnessed improvement in the quarantine system. The Inter-Africa Phytosanitary Council (IAPSC) has been playing a tremendous role in harmonizing phytosanitary regulations within the continent, training phytosanitary inspectors, and coming up with pest lists to guide nations, revision of phytosanitary legislation and regulation, and implementation of phytosanitary standards, among others.

Any challenges in carrying out your task?
The problem faced by NAQS is the lack of political will concerning the quarantine system itself. Again, the role of the quarantine service is not very much appreciated, especially in food security. A lot of attention has been focused on how to improve production. The attention placed on plant protection is not as much as that given to plant improvement. But, however successful the improvement program, once you allow pests to come in, they would destroy the crops/gains. This understanding hasn’t been appreciated and it is partly why the sector is given low funding.
Also, the public is not properly being informed about what plant quarantine stands for. Therefore, having voluntary compliance with the regulations is a bit difficult. Another problem is the lack of emergency funds and preparedness to contain the immediate outbreak of pests.

Keeping pests out of borders is a key function of NAQS. Photo by S. Muranaka, IITA.
Keeping pests out of borders is a key function of NAQS. Photo by S. Muranaka, IITA.

In recent times, what are some of the pests you find challenging?
Recently, we have noticed the introduction of fruitflies that are fast devastating fruits in our country. But we need a regional approach to tackle this problem, because the insect involved is a strong flier. We are also faced with the threats of more pests. On cassava, we have Cassava mosaic virus (Ugandan strain) which is ravaging crops in East Africa. Another is the Cassava brown streak virus, which affects cassava leaves and roots. We also have threats of banana bunchy top and banana bacterial wilt. We need to inform people so that they don’t bring planting materials into the country from East Africa. There is the need to put preemptive action in place so that new diseases don’t get to Nigeria and West Africa.

What measures are being put in place to contain the spread of these pests?
For fruitflies, we held a sensitization workshop in 2009 where different stakeholders participated. The FAO is coming up with a regional control measure for the West African bloc to harmonize and adopt. Again, scientists are looking for ways to control these pests. For cassava brown streak disease or CBSD, we have stepped up quarantine efforts aimed at curtailing/scrutinizing the entrance of planting materials from those endemic regions. In the future, we are thinking of training our officers on new tools that aid the inspection of imported planting materials.

Why is the response to crop pests especially slow when compared with the response to animal pests?
When new crop pests come in, the impact for the first few years is not so obvious. This is not the case with the invasion of animal pests when you see the deaths of animals. Perhaps this is the reason why crop pests don’t catch the attention of the Government immediately. We could be talking about fruitflies but people are saying, “Mangoes and oranges are still on the streets.” When the devastation arising from pest establishment, spread, and destruction becomes much serious and farmers start crying, that is the time we get an official response, especially in terms of funding for control measures.

What kind of support would you ask for specifically?
Capacity building to enhance pest interception and diagnosis is very important for us. If you don’t have knowledge about the biology of the pests, you may have problems. The quarantine inspectors/officers need to be trained and the training needs to be continuous. Secondly, a country like Nigeria has a very diverse culture and the climatic conditions to grow crops all year round, so there is a need for us to conduct pest surveillance so that we know the pest status in the country.

There is an ongoing pest survey and this is being done on a crop by crop basis. Scientists from universities, national agricultural research institutes, and international organizations are involved and we hope it will be on a continuous basis with support from the government and stakeholders.

How good an option is biocontrol?
Biocontrol is a good strategy. Everybody wants to deemphasize the use of pesticides because of the effect of chemical residues and there is a lot of emphasis now on food safety. Also there is concern about preserving biodiversity. Now the emphasis is on integrated pest management. The more often you can eliminate the use of pesticides, the better.

How is the collaboration with IITA?
We have a very good and strong relationship with IITA. IITA is our major stakeholder when it comes to germplasm exchange.

IITA has been assisting us in the training of our officers—upgrading their skills—especially in the area of pest diagnosis.

Sometimes when we are handicapped by inadequate facilities IITA steps in. Also IITA is good in the area of information dissemination which had been beneficial to us.
The collaboration with IITA is quite strong and mutually beneficial. Sometimes IITA assists us to attend international workshops and seminars that are relevant for job improvement.

The institute has contributed to our effectiveness in the country.

DEWN: a novel surveillance system

Innocent Ndyetabula*, indyetabura@yahoo.com and James Legg, j.legg@cgiar.org
*Maruku Agricultural Research Institute, PO Box 127, Bukoba, Tanzania

Researchers inspect cassava plants for disease incidence. Photo by IITA.
Researchers inspect cassava plants for disease incidence. Photo by IITA.

Pandemics of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the most important biotic constraints to cassava production in East and Central Africa.

For several years, researchers have tracked these two diseases and monitored patterns of pandemic expansion. However, costs have been high, and the visits made once a year have barely kept pace with the rate of disease spread.

Hence, researchers working to control these problems resolved to explore other monitoring options. During early discussions, two themes were frequently highlighted: community participation and new technology. Could both of these be incorporated into an alternative approach to monitoring disease spread in such a way that the system would provide an early warning of new outbreaks?

The result was the Digital Early Warning Network or DEWN. After extensive consultation, a plan was developed for its pilot-level implementation. This system works with six farmers’ groups in each of 10 disease-threatened districts of northwestern Tanzania, and provides them with a system based on the use of the mobile phone for reporting incidences of CMD and CBSD in their farms. By communicating monthly with farmers’ groups, it was expected that new outbreaks would be identified quickly, allowing the timely implementation of control measures.

Partnerships
The pilot phase of DEWN has been primarily implemented by the Lake Zone Agricultural Research Institute (LZARDI), under the IITA-coordinated Disease Objective of the Great Lakes Cassava Initiative (GLCI). GLCI is funded by the Bill and Melinda Gates Foundation (BMGF) and is led by the Catholic Relief Services (CRS). The partners of GLCI in the DEWN target districts included several local NGOs (TAHEA, MRHP, KUMKUMAKA, RUDDO, and TCRS) as well as the local government agricultural advisory system.

Training
At the outset, it was essential to train all participating farmers’ groups to recognize the symptoms of the two virus diseases, and introduce the SMS-based communication system. A total of 1281 farmers were trained in the 60 groups, and district partners were provided with a GPS unit and digital camera to record field locations and any unusual disease symptoms.

Each of the farmers’ groups was provided with a basic GSM phone and SIM card and introduced to the simple texting system for sending monthly disease reports. A straightforward text format was used for the farmers’ groups to provide information on how many farmers had observed each of the two diseases in their fields that month, and for how many farmers each disease had become more severe, less severe, or stayed the same. Once reports had been compiled at the farmers’ group level, they were sent as a single text to the LZARDI modem.

Outcomes
Validation visit. A follow-up visit was made after 6 months to validate farmers’ reports. A refresher course was provided, but the farmers generally indicated a good knowledge of the main symptoms of both diseases. Partly as a consequence of their new understanding of the significance of CMD and CBSD, there was a strong demand from participating farmers for improved varieties.

Voice of the Farmer reports. Participating farmers were linked to the Voice of the Farmer project (VOF). This is a project that is executed by Synovate and financed by BMGF. It aims to use a network of call centers to provide monitoring and evaluation support to existing BMGF programs.

Map based on farmers and researchers' report of CMD occurrence in Lake Zone districts of Tanzania.
Map based on farmers and researchers' report of CMD occurrence in Lake Zone districts of Tanzania.

DEWN provided a means for VOF to communicate directly with many of the participating farmers. This enabled VOF to conduct two surveys to assess the effectiveness of DEWN’s training program on the identification and management of cassava pests and diseases. Participating farmers were called directly by VOF call center staff and were asked a series of short questions in Swahili. Although farmers’ responses indicated a good general knowledge of CMD and CBSD, some confusion about symptoms was evident, highlighting the need for further training support. The VOF–DEWN reports are available online at www.vof.synovate.co.ke.

Mapping new disease outbreaks. Information obtained from the DEWN reports received from farmers’ groups was used to generate maps. One of the most significant findings was that CBSD, reported by farmers via SMS, was then confirmed by researchers’ visits in two districts (Bukombe and Urambo) in which CBSD had not previously been reported. This has allowed project teams to focus extra disease mitigation efforts on these areas.

Extending DEWN. Recognizing the potential value of DEWN for providing communities with a means of doing their own monitoring of crop disease, the GLCI cassava team in Rwanda decided to start a similar scheme. Farmers’ representatives from Rwanda visited DEWN partners in Tanzania in October 2010 and were introduced to the approach and given training in recognizing CBSD and CMD. The Rwanda team will initiate its own DEWN program in 2011.

Map based on farmers and researchers' report of CBSD occurrence in Lake Zone districts of Tanzania.
Map based on farmers and researchers' report of CBSD occurrence in Lake Zone districts of Tanzania.

DEWN has provided an innovative, informative, and relatively cheap means for involving communities in monitoring the health of their own crops. Farmers’ participation has been enthusiastic, and some important practical outcomes have been achieved. Two of the greatest challenges which remain, however, are the accurate diagnosis of CBSD, which has cryptic or unrecognized symptoms and the regular provision of feedback to participating communities.

Plans are already being developed to address these problems. As these difficulties are overcome and as connectivity in rural areas continues to expand, it seems certain that there is great potential for the more widespread use of digital networks such as DEWN for the community-based monitoring of crop diseases.