Partnerships as relationships for agricultural development

Krishnamurthy Sriramesh (k.sriramesh@massey.ac.nz)
Professor, College of Business, Massey University, Wellington, New Zealand

Humans and organizations have to depend on others for optimal existence to work effectively to achieve their goals. However, the significance of such interdependencies is often overlooked because of the tendency to take for granted partnerships, relationships, and communication in the organizational context. These key areas are often ignored, being labeled as “soft science”.

Building a coalition of public-public and public-private partnership for the promotion of 40% cassava flour in bread. Photo by IITA.
Building a coalition of public-public and public-private partnership for the promotion of 40% cassava flour in bread. Photo by IITA.
What is partnership?
In organizational contexts, the term “partnership” usually means the legal/contractual association between two or more entrepreneurs. The word “partner” originated from parcenter-‒a legal term meaning “joint heir.” In the fourteenth century, the emphasis on “partner” shifted away from this legal orientation because of the similarity to “part” (part of). Webster’s dictionary still puts the contractual relationship of the word partner first and only then mentions “a cooperative relationship between people or groups who agree to share responsibility for achieving some specific goal.” This nonlegal definition is most useful for discussing partnerships in agriculture for development. Using the term “partner” to refer to the various human elements involved in the long chain of agriculture for development helps us counter such conventional wisdom and assists in moving science closer to the common man.

Each partnership has three broad phases: initiation, management, and exit. Entering into a partnership, whether at the personal or the organizational level, should be done with care and a level of informed thinking that should include how the partnership will also be terminated. If partnerships are entered into in haste or without much groundwork, there is a high probability that they will lead to failures, and often result in loss of reputation as well. Especially when one does not have the luxury of time to assess potential partners, relying on previous experiences of working with a partner (and an assessment of the strengths and weaknesses of the partner) is a very good foundation with greater potential for success. Therefore, personal as well as institutional “memory” is crucial to success in choosing the right partner. So also is harnessing the strengths of a partner (while avoiding weaknesses) for maximum harmony and symbiosis.

Types of partnership
As relationships, three types of partnerships can be discerned: exchange, communal, and exploitive. An exchange relationship is one of pure barter where material or even information may be exchanged often among strangers as seen between a buyer and salesperson. Communal relationships often occur between partners who have known each other and thereby care for each other at a deeper level. The exchanges in a communal relationship can often be for altruistic purposes where one partner derives gratification by making the other happy, successful, comfortable, etc. Exploitive partnerships are indicative of parasitic tendencies from one partner often exploiting the goodness (kindness) of the other. Knowledge of the characteristics, strengths, and weaknesses of partners is vital to managing partnerships for increased harmony and efficacy.

Ingredients of good partnership
There are other key ingredients that help to develop/identify good partners. Foremost is the element of trust. Every good partnership is built on trust. When trust is lost, partners become suspicious to the point of being paranoid and that leads to a breakdown of the relationship. Transparency and open communication help to build trust. A reasonable argument can be made that it is impossible to build and maintain trust without effective (two-way) communication among partners. Mutuality of control (sharing control in the partnership) is another key ingredient of good partnerships. When control is not mutually shared, this often leads to exploitive partnerships and that is certainly not a healthy relationship.
Commitment is another key element of a good partnership. Every partnership is built around attaining certain goals and objectives. Unless every partner involved has adequate, or nearly equal, commitment to those goals and the ways by which to reach them, there can be no synergy in that partnership. Commitment to harmony within the partnership is equally vital and when both are present, a partnership is bound to flourish, leading to exponential outputs. Finally, satisfaction is a vital ingredient of a good partnership. Unless all partners are satisfied with the various elements of the partnership (process, output, and outcome), there is bound to be discord, ultimately leading to a breakdown in the partnership.

Considerations for good partnerships
There are several elements that help in cultivating good partnerships: (a) access: when partners share access to each other and their networks of information and influence, there is harmony in the partnership; (b) disclosure and openness: unless both partners are equally open, the more “closed” partner is more likely to exploit the openness of the more “open’ and sharing partner; (c) share mutual networks: good partners help one another’s integration into individual networks, thereby enhancing one another’s outreach and influence; (d) shared interests and shared tasks: overlapping interests obviously bring partners closer together whether in personal or professional settings; similarly, sharing similar tasks (and thereby goals and objectives) also leads to closer partnerships; and (e) continuing dialog: frequent communication between partners is a sure way of building good partnerships. In addition, dialog helps to reduce tensions in partnerships before these become irreparable.

Intra-organizational partnership matters
It is important for organizations to recognize that partners internal to the organization (employees) are just as, if not more, important than partners outside the organization. Internal partners are often taken for granted, a sure recipe for a weak organizational culture that breeds rumors, discord, and low morale. Involving internal stakeholders in governance is vitally important as it drives employees to feel they have invested in the organization and thereby elicits greater loyalty, commitment, and satisfaction in the partnership. Finally, it would not be hyperbole if one were to state that organizations neglect relationship building at their peril.

Partnership is a mission of IITA
IITA works in partnership with national, regional, and international research institutes, national governments, civil society organizations, and the private sector to conduct research and ensure that research results benefit agriculture growth and development, particularly in sub-Saharan Africa. During the course of 45 years, IITA has partnered with over 200 different organizations all around the world to advance pro-poor research programs. IITA recognizes that close collaboration with partner organizations is essential for the optimum use of resources, knowledge, technologies, access to cutting-edge science and technologies, mutual learning and for making a positive impact on the livelihoods of poor farmers.

IAPSC: Protecting Africa’s plant health

Jean-Gerard Mezui M'ella, IAPSC
Jean-Gerard Mezui M'ella, IAPSC

Jean-Gerard Mezui M’ella is the Director of the Inter-African Phytosanitary Council (IAPSC), the African Plant Protection Organization with headquarters in Nlongkak, Yaounde, Cameroon. IAPSC is an intergovernmental organization with 53 members under the umbrella of the African Union. It coordinates plant protection procedures in Africa.

The IAPSC Director coordinates the activities of its four sections (Phytopathology; Entomology; Documentation, Information and Communication; Administration and Finance). He represents the African region in the Commission for Phytosanitary Measures of the International Plant Protection Convention (IPPC/FAO), promotes compliance with International Standards for Phytosanitary Measures (ISPMs), and represents the African Union Commission on diplomatic matters in Central Africa. In this interview, he talks about the important work of IAPSC.

Why is IAPSC important?
IAPSC is a technical office of the African Union/Directorate of Rural Economy and Agriculture. It is one of the 10 Regional Plant Protection Organizations of the IPPC. As the regional organization for Africa, it works in collaboration with the national plant protection organizations of the 53 countries of the AU.

IAPSC mostly implements its activities through the eight African Regional Economic Communities (RECs) and sub-RECs. It addresses phytosanitary issues in Africa including the following:
– The vulnerability of African crop production systems to the impact of diseases, insect pests, and noxious weeds;
– Economic losses incurred through spoilage;
– Noncompliance with ISPMs, trade regulations, and equivalents;
– Dearth of phytosanitary data (Pests Risk Analysis, diagnostics, surveillance, etc.)

AU-IAPSC safeguards agriculture and natural resources from the risks associated with the entry and establishment or spread of pests of plants and plant products to ensure food safety and quality supply to intra-African and international markets.

How would you assess the state of plant protection in Africa?
Africa still has a lot of problems with plant protection. In fact, most African countries inherited an administration put in place before independence, which to a certain extent, has safeguarded the plant health of the different countries. There were departments of Agriculture and Divisions such as plant pathology, entomology, agricultural chemistry, and also plant quarantine. After independence, with the coming into force of the IPPC, adopted by the FAO Conference of 1951, the global approach and harmonization of phytosanitary measures started to take shape. For example, a common format for phytosanitary certificates was set up, common action was secured to prevent the spread of pests of plants and plant products, guidelines were provided regarding phytosanitary matters and the relevant actions to be taken by national governments in the implementation of plant quarantine.

IAPSC promotes cooperation among countries to prevent the movement of serious pests. It provides a forum for African countries to promote their views on plant health. In addition, quarantine structures in Africa differ from one region to another. In fact, some countries have operational quarantine stations but others do not. We at IAPSC encourage the creation of regional and subregional quarantine stations, although even those in existence find it difficult to comply with IPPC standards. It is our hope to have quarantine stations in each country.

Quarantine inspector reading about banana bunchy top. Photo by L. Kumar, IITA.
Quarantine inspector reading about banana bunchy top. Photo by L. Kumar, IITA.

Harmonizing phytosanitary regulations and policies in Africa must be quite challenging. How are you doing this?
Nontariff barriers such as SPS measures are often used as a disguised way to restrict trade. It is becoming essential, following the World Trade Organization‘s agreement on SPSMs for member countries of the WTO to ensure that the SPS measures they apply are in line with this agreement. To do so, the technical and organizational capacity of the various organizations at national, regional, or international levels have to be given the necessary tools to deal with the new challenges.

The 1995 WTO agreement was set up to remove unnecessary, unjustified, and arbitrary pressure on international trade in plants and plant products. This was a new situation for the various stakeholders, e.g., new themes such as transparency, scientific justification, notifications, inquiry points, risk analysis, and standards are now the guiding principles.

It is thus of the utmost importance for African countries, where phytosanitary capacity deficits are most severe, to begin a process of developing a strategy for capacity building to meet their obligations under the WTO rules.

In 2003, the RECs became the implementation arm of IAPSC whose technical programs are assessed by the RECs during the annual meetings of the Steering Committee and General Assembly.

IAPSC, much like AU, encourages regional common markets.

What are your major challenges?
Besides funding, the major challenges IAPSC faces on a daily basis include the entry of new pests on the African continent that annihilate the efforts of member countries; the proliferation of invasive pests; climate change that brings about new plant heath challenges; and a lack of scientists specialized in plant protection.

How do you ensure that regulations or policies are strictly implemented?
We endeavor to strengthen the capacities of countries so that they can prevent and control the introduction of plant pests in Africa. We encourage the setting up of Centers of Phytosanitary Excellence, the creation of phytosanitary networks, and the regular updating of pest lists in Africa.

IITA researchers conduct plant health tests in lab. Photo by L. Kumar, IITA.
IITA researchers conduct plant health tests in lab. Photo by L. Kumar, IITA.

What are you doing to improve the links and working relationships among NPPOs and networks in Africa?
We organize workshops and seminars on plant matters; we publish a quarterly phytosanitary news bulletin; and we enrich on a regular basis the phytosanitary information in the International Plant Protection Portal of FAO.

IAPSC provides information on quarantine pests on plants as well as for the protection of plant products for the AU member countries through both the paper and electronic media. Paper-based information systems include a scientific analysis, a phytosanitary situation in Africa, reports of service activities, and a collection of phytosanitary regulations and standards. Electronic information on compact discs covers a database of the meetings and phytosanitary regulations of member States. The Phytosanitary News bulletin of IAPSC is issued four times a year. It welcomes contributions and articles from National Plant Protection Organizations.

There is a web site for the worldwide dissemination of information (http://www.au-iapsc.org), and a library that hosts scientific books.

Our workshops and seminars aim at sharing information on the phytosanitary situation and on the findings in crop protection research.

We frequently conduct monitoring and evaluation exercises (country visits, exchange and information sharing among countries). All these activities help in networking among the partners in Africa.

What support do you need from the member countries? From partners? From clients?
To improve the prevailing situation concerning quarantine standards, regional cooperation and compliance with international regulations, the following priorities have been identified:
1. Ensuring that all African countries are parties to the IPPC;
2. Ensuring the harmonization of plant protection policies across RECs through capacity building;
3. Regularly updating pest lists and quarantine pests;
4. Harmonizing phytosanitary inspection systems; surveillance, emergency responses, risk analysis: procedures to analyze and reduce the risk of new pests entering a country;
5. Setting up a harmonized pesticide management system.

Describe your collaboration with IITA.
IAPSC-IITA cooperation is in the following key areas: Cassava pests’ diagnostics and control technique methods, Cassava germplasm and planting material exchange, Banana pests’ diagnostics and control technique methods, Banana germplasm and planting material exchange, and Harmonization of African countries’ phytosanitary systems.

What could international bodies such as IITA do to ensure that Africa’s agriculture is safeguarded?
IITA, like other bodies, should work with country structures through IAPSC, and collaborate with recognized subregional and regional structures of the public and private sectors in plant protection.

COMESA: Ensuring sanitary and phytosanitary standards in the region

Martha Byanyima, COMESA
Martha Byanyima, COMESA

Martha Byanyima is a food science and trade expert from Uganda. She has worked in the region on sanitary and phytosanitary (SPS) and agricultural trade programs, supporting countries to carry out the necessary policy and legal reforms and strengthening private sector/industry systems.

Currently, she is the Regional Process and Partnerships Facilitator of the Comprehensive Africa Agriculture Development Program (CAADP) at the COMESA Secretariat. CAADP is the Africa Union Commission and the NEPAD Coordinating Agency (AUC/NPCA) continental program aimed at increasing agricultural productivity in Africa.

She supports development of the regional CAADP process and establishes partnerships for regional investments in key areas prioritized to address the challenges of food security and poverty in the Common Market for East and Southern Africa (COMESA) region. She also leads COMESA’s SPS work program.

What is COMESA all about?
COMESA is a regional economic community (REC) of 19 countries. Our mandate is to create a vibrant and dynamic common market in which business will thrive and expand regionally. We improve the competitiveness of the farmers, entrepreneurs, and traders. In this regard, compliance with international standards, particularly SPS measures, which are a prerequisite for agriculture and agro-industry competitiveness and access to regional and global markets, becomes very important to us.

Why are SPS measures important?
SPS measures are mandatory requirements instituted by governments to protect human, animal, and plant health. These commonly take the form of legislation, inspection, and testing requirements and border controls. Measures similar to SPS had been in place for several decades; however, they became more important under the World Trade Organization (WTO) Agreement in 1995, which recognized the right to protect the agricultural sector and biodiversity. These measures ensure that products produced domestically or imported conform with the regulations and standards of the territory.

The SPS agreement of WTO encourages countries to use common standards, guidelines, and recommendations as developed by the International Plant Protection Convention for plant protection, the Codex Alimentarius Commission for food safety, and the World Organization for Animal Health for pests and animal diseases and zoonoses.

How can compliance with SPS standards facilitate trading and marketing of agricultural goods?
Compliance with SPS standards promotes economic development and trade. SPS is a very important area as we deepen regional integration to reduce barriers to transacting business and to free the movement of agricultural and food products among member countries. COMESA has slowly progressed from a Preferential Trade Area with lower duties charged on goods originating from member countries to a Free Trade Area (FTA) in 2000 where no duty is charged on goods from member countries as long as they comply with the rules of origin and to a full Customs Union in 2009 where a common external tariff is applied to goods imported from outside the region.

How do you promote these standards?
While such a progression is based on tariff reduction and/or elimination to reduce the cost of transacting business, SPS barriers constitute an added cost to business that is not easily quantified, requiring scientific and technical capacity that is often lacking. In this regard, strengthening SPS infrastructure, such as laboratories, and the harmonization of SPS laws, regulations, procedures, and standards are essential for intra-regional trade and successful regional integration.

What is the Green Pass system?
It is the harmonization of SPS measures across COMESA countries and the establishment of equivalence through common certification schemes. The Green Pass system is intended to restore confidence among trade partners and remove SPS barriers to facilitate trade and the marketing of food and agricultural products within the region.

How can Green Pass help trade and markets in East and Southern Africa?
Since SPS is an important area for effective markets in the context of regional integration, COMESA has a regional work program aimed at mobilizing resources to address the critical gaps in the SPS systems of regional member countries. The work program has four result areas: (a) common certification schemes (standards), (b) monitoring, surveillance, and preparedness for emergencies, (c) improved exchange of SPS information between the public and private sectors, and (d) improved regional leadership and coordination.

Our activities include encouraging the adoption of regional standards, establishing regional SPS databases and information systems, establishing modalities and piloting mutually agreed certification schemes such as the Green Pass, awareness and training workshops, and strengthening SPS infrastructure, such as laboratories.

How are you implementing the Green Pass system?
The first step in creating awareness and motivating countries to step up harmonization efforts is the establishment of the SPS legal framework to guide countries on the necessary policy and legal reforms. At the heart of the legal framework is the Green Pass system.

Enforcing phytosanitary policies and regulations in the region would benefit  trade and commerce, and ultimately the farmers and consumers. Photo by IITA.
Enforcing phytosanitary policies and regulations in the region would benefit trade and commerce, and ultimately the farmers and consumers. Photo by IITA.

What can international organizations or networks do to help promote standards and the Green Pass system?
Currently we are developing proposals to pilot commercially driven Green Pass certification schemes. For example, we will support the member countries to develop common protocols to address the problem of fruitflies in banana, passion fruit, and avocado, or aflatoxins in maize. Such protocols, developed and piloted by the private sector and governments, with support from COMESA, will constitute the science to inform the Green Pass certification scheme. The protocols and related infrastructure, such as reference laboratories, are regional public goods that serve both the private and public sectors.

Who are your partners in implementing the system?
In piloting the Green Pass certification scheme, we envisage partnerships with the private sector, regional institutions with relevant expertise, such as IITA and governments. The decision to implement the Green Pass was endorsed by ministers of agriculture in July 2010, and thus all countries will be involved to the extent that the Green Pass is the viable option to resolve the existing SPS problem.

What are some of your challenges?
The greatest challenge is to create a common understanding of the Green Pass concept; there are variations in the way it is understood by experts, governments, the private sector, and other stakeholders.

Another challenge is traditional certification schemes that are based on international standards but may not respond to intraregional trade challenges. For example, South Africa (SA) demands a certificate of origin from Zambia honey exporters in addition to the animal health certificate issued by the Government. The Zambia market, however, has lots of food imports from China which treats bees with antibiotics. SA regulations restrict antibiotic residues in honey. Therefore, SA demands full proof that the honey originates from Zambia and not China, where the honey is not organic. In this case the Green Pass would come in handy to establish a certification scheme that includes traceability protocols and a certificate of origin in addition to the animal health certificate from the Government.

Of course, there are also constraints in both human and financial resources.

Food supplies being loaded on trucks for transportation to urban centers. Photo by IITA.
Food supplies being loaded on trucks for transportation to urban centers. Photo by IITA.

Why a common market for East and Southern African?
On 22 October 2008, heads of States and Governments of the 26 countries in Eastern and Southern Africa that have membership in COMESA, EAC, and SADC, made a landmark decision that the three RECs should immediately start working towards a merger into a single FTA to deepen regional integration. The three have a combined population of 565 million, and a gross domestic product of US$875 billion. These are 57% of Africa’s population and 59% of the GDP. The total land mass of the COMESA-EAC-SADC region is 14.8 million km² or 49% of Africa’s total land mass.

The decisions of the Tripartite Summit have far-reaching implications on the operations of the three RECs with regard to joint planning, programming, and implementation of the common agenda. In addition, there will be a need for development partners to rationalize and harmonize their support in the tripartite framework.

Since then, the Agreement to establish the Tripartite FTA has been developed and will be signed in mid-2011. The purpose of the Agreement is to enhance collaboration (through joint investments) and avoid the duplication of effort that has characterized the COMESA region as a result of multiple membership of the regional communities.

Annex 14 of the Agreement to establish the Tripartite FTA specifically addresses SPS, requiring Tripartite member countries to harmonize SPS measures and, where necessary, to implement joint programs.

What role do you envisage for IITA in COMESA?
IITA and other regional specialized scientific institutions have a huge role to play They can ensure that the best science informs agricultural planning and development, using the CAADP framework that has proved to be an effective instrument in harnessing knowledge and bringing it to sector planning processes at the national and regional levels. However, governments are responding slowly to the all-inclusive principle of CAADP; non-State actors such as IITA, farmers, and the private sector have not been engaged to the extent necessary to achieve the effective transfer of scientific knowledge and expertise.

What support do you need?
At this stage, it is important for all players to recognize the transformation taking place in the agricultural sector on this continent—the bumper harvests and the increased investments. This is largely driven by RECs through support to country CAADP processes and regional integration programs. Policy reforms and technical support are important elements of the transformation process that cannot be achieved by RECs acting alone; specialized institutions such as IITA and other nonstate actors need to fill this gap. It is, thus, important that development partners, donors, and other actors respond positively to the call by the African Union to align with regional priorities embedded in the RECs’ regional integration programs and in so doing support the transformation process currently taking place on this continent.

What is your vision for African agriculture, trade, and economy?
I look forward to deeper regional integration among the African countries. The Tripartite framework provides the best means to achieve this. By strengthening infrastructure on key trade corridors and facilitating the transport of goods while strengthening the countries’ SPS systems through the best science available, agricultural value chains will expand beyond the COMESA region. New opportunities will be opened for the private sector. At the same time, it is my hope that the Tripartite framework will encourage collaboration in scientific research and innovations to further strengthen value addition and trade in value-added food products.

Allies in nature

Jean-François Vayssières (j.vayssières@cgiar.org), Appolinaire Adandonon (adanappo@yahoo.fr), Antonio Sinzogan (a.sinzogan@cgiar.org), and Paul van Mele (p.vanmele@cgiar.org)

<em srcset=Bactrocera invadens adults on a mango” width=”250″ height=”188″ />
Bactrocera invadens adults on a mango

Biocontrol has been around for over 2000 years. The most ancient example of biocontrol use recorded was that of Chinese and Southeast Asian fruit growers, who used weaver ants to protect their citrus crops. Farmers in Asia continue to practice this until today.

Weaver ants (one colony of Oecophylla = several nests) live on trees and defend their territories using chemicals or “pheromones” that they leave on leaves, branches, and fruit. Pheromones are chemicals secreted by insects that strongly influence, in the case of ants, the behavior of others of the same species. The release of these pheromones, which is a form of nonverbal communication, can effectively recruit ants to new food sources or trigger warnings as a protection against intruders.

There are two Oecophylla (Hymenoptera Formicidae) species in the world—the Asian species, Oecophylla smaragdina Fabricius, and the African species, O. longinoda Latreille.

Their successful application as an endemic natural enemy is rising in tropical countries. New research started exploring the mechanisms underlying ant protection of plants against arthropods. Apart from direct control mechanisms, including the predation on or deterrence of insect pests during direct encounters, indirect mechanisms have recently been discovered involving the detection of the territories of enemy ants.

Researchers have demonstrated that the Asian Oecophylla species can deter insect herbivores or plant eaters through info-chemical action. A laboratory test showed that a beetle which this ant preys on was more reluctant to feed on leaves sampled within ant territories than on leaves sampled outside.

In Africa, O. longinoda is being used as a biocontrol agent against agricultural pests. This species defends chemically marked territories at both levels, the intraspecific (within species) and interspecific (between species). Due to their pronounced territoriality, permanent surveillance (all year round, day and night), and very efficient recruitment, O. longinoda respond quickly to any increase in prey numbers.

Nest of <em srcset=O. longinoda on a mango tree” width=”250″ height=”188″ />
Nest of O. longinoda on a mango tree

The use of O. longinoda colonies is suitable for perennial cropping systems in sub-Saharan Africa because they are efficient against fruit fly pests, one of the widespread threats, constantly present in tropical agricultural systems.

Two fruit fly (Diptera Tephritidae) species—Bactrocera invadens Drew Tsuruta & White and Ceratitis cosyra (Walker), were found to be the most important species in terms of fly abundance and fruit damage in Bénin during the 2005 and 2006 seasons. The first is an exotic species from Asia, only recently recorded in West Africa, where it has become a huge threat in main fruit crops, such as mango (Mangifera indica) and citrus. The second species is indigenous.

To control fruit flies, growers sometimes resort to pesticides that are registered for cotton production. This control method is not convenient or effective at all.

Because of the economic importance of fruit flies and the lack of appropriate control methods especially in SSA, research efforts on alternative fruit fly control strategies have received greater attention, including the use of endemic biological control agents.

Making more efficient use of natural means of pest control can greatly benefit planters.

At the beginning of 2008, a Regional Control Program of Mango Fruit Flies called “West African Fruit Fly Initiative” (WAFFI) was launched in West Africa by IITA-CIRAD, with World Bank funding. The program was based in IITA-Bénin. Seven West African countries took part in 2008, and another eight in 2009. A part of the WAFFI research focused mostly on the behavior of economically significant fruit flies and their control with biological control agents, such as weaver ants.

In Bénin, we studied the behavior of fruit flies in both laboratory and field tests over several months. These experiments revealed the fundamental role of info-chemicals of ants in repelling females of two fruit fly species during their oviposition or egg-laying period in mango. Interactions were studied on mango between two frugivorous or fruit-eating fly species (B. invadens and C. cosyra) and the African weaver ant (O. longinoda).

Predation of fruit fly larva third larval instar by weaver ants
Predation of fruit fly larva third larval instar by weaver ants

Results showed that: (1) female flies are strongly attracted to the mango fruit at ripening stages for egg laying; (2) without previous passage of ants on the fruit, the oviposition of tephritids (flies) is very important in mango; (3) once weaver ants have “patrolled” on mango fruit, female oviposition is significantly reduced; (4) C. cosyra seemed twice as sensitive as B. invadens about landing on treated fruit vs. untreated fruit; (5) similar results were found for the time spent on mango fruit; (6) ant-treated fruit had six times less damage from B. invadens and four times less damage from C. cosyra than untreated fruits; (7) B. invadens had significantly more pupae per kilogram fruit than C. cosyra in ant-free mango fruit, whereas no significant difference in ant-treated fruit was detected between the native C. cosyra and the exotic B. invadens.

The presence of weaver ants in mango trees reduced the damage caused by the fruit fly family Tephritidae through predation of adult fruit flies (rare), predation of third-stage larvae (quite frequent) and, especially, the effect of pheromones left by the ants on the fruit so that flies are repelled and are discouraged from egg-laying. Weaver ant presence resulted in a marked reduction in fruit damage.

The influence of info-chemicals from predators such as ants on the foraging behavior of fruit insects and more generally on pests could have crucial consequences for future observations and applications on host selection and consequently in host protection against these pests.

Practical information about the use of weaver ants in fruit fly pest control should be made available to all those involved in the fruit industry at every level, particularly local official producers, pickers, and rural advisors.

This work is also a good example of collaboration among IITA, Africa Rice, and CIRAD on a very important issue about high-value products in West Africa.

References
Adandonon A., J.F. Vayssières, A. Sinzogan, and P. Van Mele. 2009. Density of pheromone sources of the weaver ant Oecophylla longinoda affects oviposition behaviour and damage by mango fruit flies (Diptera: Tephritidae). International Journal of Pest Management. 55 (4), 285 – 292.
Dejean A. 1991. Adaptation d’Oecophylla longinoda aux variations spatio-temporelles de la densité en proies. Entomophaga. 36: 29-54.
Dejean A., P.J. Solano, J. Ayrolles, B. Corbara, and J. Orivel. 2005. Arboreal ants build a trap to ambush and capture prey. Nature. 434: 973.
Hölldobler B. and E.O. Wilson. 1978. The multiple recruitment systems of the weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 3: 19-60.
http://www.thefreedictionary.com/. Accessed on 30 Aug 2009.
Offenberg J., M.G. Nielsen, D.J. MacIntosh, S. Havanon, and S. Aksornkoae. 2004. Evidence that insect herbivores are deterred by ant pheromones. Proceedings Royal Society London. 271: 433-435.
Sinzogan A., P. Van Mele, and J.F. Vayssières. 2008. Implications of on-farm research for local knowledge related to fruit flies and the weaver ant Oecophylla longinoda in mango production. International Journal of Pest Management. 54 (3), 241-246
Van Mele P. 2008. A historical review of research on the weaver ant Oecophylla in biological control. Agriculture and Forest Entomology. 10 (1), 13-22.
Van Mele P., J.F. Vayssières, E. Van Tellingen, and J. Vrolijks. 2007. Effects of the African weaver ant Oecophylla longinoda in controlling mango fruit flies (Diptera: Tephritidae). Journal of Economic Entomology. 100 (3), 695-701.
Van Mele P., J.F. Vayssières, A. Adandonon, and A. Sinzogan. 2009. Ant cues affect the oviposition behaviour of fruit flies (Diptera: Tephritidae) in Africa. Physiological Entomology. DOI: 10.1111/j.1365-3032.2009.00685.x
Vayssières J.F., G. Goergen, O. Lokossou, P. Dossa, and C. Akponon. 2005. A new Bactrocera species detected in Bénin among mango fruit flies (Diptera: Tephritidae) species. Fruits. 60 (6), 1-9.
Vayssières J.F. and A. Sinzogan. 2008. The use of weaver ants (Hymenoptera Formicidae) in fruit fly (Diptera: Tephritidae) pest control. Leaflet IITA-CIRAD N°= 5. West African Fruit Fly Initiative (WAFFI). 4 p.
Vayssières J.F., S. Korie, D. Ayegnon, and C. Akponon. 2009. Correlation of fruit fly (Diptera Tephritidae) infestation of major mango cultivars in Borgou (Bénin) with abiotic and biotic factors. Crop Protection. 28, 477-488.
Vayssières J.F., A. Sinzogan, and A. Adandonon. 2009. Principal methods for integrated control of fruit flies in West Africa. Leaflet IITA-CIRAD N°= 6. West African Fruit Fly Initiative (WAFFI). 4 p.

O.A. Adenola: More awareness needed on the dangers of aflatoxins

Pastor O.A. Adenola
Pastor O.A. Adenola. Photo by IITA

The president of one of the strongest crop networks in Nigeria, Pastor O.A. Adenola, talks about the need for stakeholders to join forces against aflatoxin spread and other issues. This is an excerpt from his interview with Godwin Atser.

Do farmers understand what aflatoxins are?
They may see the fungus on the maize cob but really many Nigerian farmers do not know the danger in what they see: what it is… what effects it has on people as a result of eating grain that is already contaminated… I think we need a lot of awareness, a lot of teaching to get our farmers to know the dangers of aflatoxins in our foods. The problem is that you don’t see them and their effect physically. If you look at the cassava mealybug, for instance, the farmer sees the plant die. In the case of aflatoxins, you don’t see them causing anything bad to maize; it is the after-effect that damages people’s health.

What can be done to bring the message to the people?
It has to involve a collective effort from all of us: the research institutes, the Agricultural Development Programs, the Maize Association of Nigeria, and the media. We won’t make any progress if we don’t collaborate to get the farmers to know the importance of the effect of aflatoxins on human beings and on animals.

You participated in the Doubling Maize Project. What were your observations?
At the time the project was initiated in 2006, the maize production level on average was 1.5 t/ha. The project target was to double production—from 1.5 to 3 t/ha. A farmer who could not combine production inputs to give us 3 t/ha was not qualified to be involved in the scheme because we did not want to increase the area planted. We wanted to increase production per unit area. The intention was to intensify production so that we could double what was on the ground.

So what happened?
I tell you, farmers made more than 3 t/ha! Also if the technology is properly applied, Nigeria can easily double maize production.

What effort is your association making to disseminate some of the findings of that research to increase maize production?
The maize network is stronger than the networks of other crops in Nigeria, maybe, because of the facilities we have at IITA that are linking us up properly with research and also with Ministries of Agriculture all over the country. And since we were the beneficiaries of the research findings, it was easier for us and for our members to adopt the improved technologies.

All that the researchers were telling us was “You can be better farmers if you take the technology.” I must tell you that every farmer is out there in the field because he wants to make more money. So the benefit is good enough to propel the technology.

How is the collaboration between MAAN and IITA?
Excellent! I have been relating with IITA since 1984 and when this Association was formed in 1992, it was formed in IITA. Since then we have had very good collaboration.

What can IITA do to make this partnership grow?
Whenever there is a need and we call on IITA, they have always answered. The Director General and the maize “chief”, Dr Sam Ajala and his team, have been very cooperative. That collaboration is what is important. If you have a problem and you call your friend and he answers, then you are okay.

Sunday Ekesi: Partnership is about respect

Sunday Ekesi of icipe
Sunday Ekesi of icipe. Photo from icipe

Sunday Ekesi is a research entomologist from Nigeria working at the International Centre of Insect Physiology and Ecology (icipe). He is currently leading a continent-wide initiative on the African fruit flies that threaten the production and export of fruits and vegetables. Its aim is to develop a cost-effective and sustainable technology for controlling the pest.

What are your research interests and focus?
I have a lot of curiosity for all aspects of reducing damage to crops by arthropod pests to raise productivity, increase income, and improve the livelihood of smallholder growers across Africa. I am interested in integrated pest management (IPM), the development and application of entomopathogens and baiting techniques for managing arthropod pests and their integration into habitat management and other IPM approaches.

The goal is to develop effective, economical, and environmentally sound approaches for managing arthropod pests and to reduce dependence on chemical pesticides.

My research center on the development of an IPM package that encompasses baiting techniques, classical biological control, application of augmentorium, entomopathogens, and postharvest treatment for quarantine fruit flies.

Tell us about the project on fruit flies
icipe and IITA are the pioneering institutions that address the fruit fly menace in Africa. The project, funded by the German Federal Ministry for Economic Cooperation and Development (BMZ), involves developing and implementing an IPM program for three major mango pests—tephritid fruit flies (e.g., Bactrocera invadens and Ceratitis cosyra), mango seed weevil (Sternochetus mangiferae), and mealybugs (Rastrococcus iceryoides). These tree pests ravage mango, causing losses ranging from 30 to 80%, depending on locality, variety, and season. Fruit flies and mango seed weevil are also quarantine pests and quarantine restrictions limit the export of fruits to lucrative markets abroad.

In the project, icipe, IITA, and the University of Bremen, together with national agricultural research system (NARS) and advanced research institute (ARI) partners in Africa, Asia, Europe, and the USA are developing and implementing IPM programs in Kenya, Tanzania, and Bénin. The project aims to minimize the use of pesticides that lead to unwanted residues, and so to facilitate compliance with the standards required for domestic urban and export markets.

Any insights about partnership?
Partnership is about having common and complementary interests. Capacity and expertise can be strengthened only through partnerships and shared commitments. Partners have to believe that their work will make a difference. The scale and scope of work are usually amplified by the collaboration and it is in the interest of all scientists and centers to work with one another to solve pertinent problems to benefit the growers.

Above all, partnership is about respect for opinion and one another, affection, trust, and generosity. There is a lot that icipe and IITA can do together—projects that take a holistic approach to crop problems in which IPM is only one component.

Sunday Ekesi and a PhD student discuss fruit fly control methods with a mango grower
Sunday Ekesi and a PhD student discuss fruit fly control methods with a mango grower

Who are your other collaborators?
We work with the World Vegetable Center largely on managing red spider mite; also with the International Atomic Energy Agency in developing attractants for fruit fly management and rearing methods in support of the sterile insect technique and with the SP-IPM and other CGIAR centers that are interested in applying IPM for pest suppression.

I work with farmers with established orchards and involve them in formulating any research agenda from day one. Our national partners in all the target countries are the key to identifying farmers and farmer groups. They work with us from project planning to implementation and are vital to the success of the project.

What are your challenges?
I work mostly with alien invasive species where the first choice of management is classical biological control. This involves exploration for natural enemies in their aboriginal home. There are enormous challenges arising from the movement of biological control agents because of restrictions related to the Convention on Biological Diversity. No country is willing to allow any living organism to be taken from their environment for use in another country. Classical biological control is all about international public good yet it is becoming increasingly difficult to take natural enemies from one place to help in another country facing a devastating pest problem. We have not been able to bring in parasitoids of B. invadens to Africa from its putative aboriginal home of Sri Lanka. Similarly, it has been extremely difficult to obtain parasitoids of R. iceryoides from India for managing the pest in Kenya and Tanzania.

Another challenge is working on three complex insect pests at the same time. None of these pests is easy to deal with but by prioritizing the activities, sharing the tasks among partners, and ensuring that the milestones are achievable, we have been able to address the challenges. Coordination has been challenging but the partnership has been wonderful.

There are rewards as well. Being able to find affordable solutions to pest problems and seeing farmers apply the technologies—those make me happy. For example, in one of our project benchmark sites in Kenya, farmers previously could not sell mangoes to urban markets or export to lucrative markets in the Middle East because of the B. invadens problems. They are now able to do so by adopting technologies from the project. This is motivating and rewarding!

Biological control at IITA: past, present, and future

Rachid Hanna, r.hanna@cgiar.org

Banana bunchy top and banana aphid survey, DR Congo
Banana bunchy top and banana aphid survey, DR Congo. Photo by IITA

Biological control is one of the oldest and most useful and ecofriendly approaches to pest management.

IITA has had an excellent tradition in biological control which has given it some of its greatest successes. These were captured by Peter Neuenschwander in his 2004 commentary in Nature.

The past and the present
The invasion of Africa by the cassava mealybug and the initial failure to find a solution to this devastating pest marked the start of a series of highly successful biological control efforts led by IITA in collaboration with partners from Africa and from around the globe. The mealybug invasion was shortly followed by the cassava green mite, also originating from South America. The duo devastated production throughout the cassava belt. Finding a natural enemy—a tiny parasitic insect (renamed several times) Anagyrus (=Apoanagyrus =Epidinocarsis) lopezi—for the control of the mealybug was relatively quick. Once it was released, the parasitoid quickly established. Aided by over 150 additional releases and within a span of 12 years the parasitoid covered nearly all of SSA, in the process leading up to 90% reduction in cassava losses and up to US$29 billion in estimated value of crop recovery.

The campaign for green mite biological control followed an approach similar to that of the mealybug, but it took much longer to find appropriate predators that would eventually provide the control needed for cassava recovery from the two South American invaders. Three promising predators (tiny phytoseiid mites) were established, one became extinct, another was restricted to humid regions, and a third species (Typhlodromalus aripo) became nearly the equivalent of A. lopezi (without the many name changes!).

Within a span of 11 years and over 450 additional releases, T. aripo has been established in at least 22 countries. Where it has been present for 2 or more years (and where cassava varieties have at least partly hairy apices that are favorable for T. aripo colonization and persistence), it brought down losses to the mite from an average of 35% to below 10% (after mealybug control), resulting also in billions of dollars in crop recovery.

The mealybug and green mite campaigns have been credited for bringing the capacity of biological control to SSA and spreading its science and practice as no other on any continent has done. Several successful projects followed, including that of the mango mealybug (an invader from India) and the spiraling whitefly (a polyphagous pest from the Caribbean), and extended to control of the water weeds. These successful efforts added another billion US$ in estimated savings.

Typical damage by pod borer caterpillar. Photo by IITA
Typical damage by pod borer caterpillar. Photo by IITA

These campaigns provided the stimulus and the capacity to build on successes with the continuation of biological control efforts at IITA. Presently, cowpea thrips and cowpea pod borer are being fought with the tiniest of known parasitoids (for thrips) and with a combination of a parasitic wasp and a virus (for cowpea pod borer). Programs are under way to tackle several other devastating pests: the coconut mite (from South America), the banana aphid (an invader from Southeast Asia and the only vector of the devastating banana bunchy top virus), the Sri Lanka fruit fly (now present in 24 countries and on more than 50 host fruits in Africa), and a variety of indigenous pests including the African root and tuber scale (in the Congo Basin), the sweet potato whitefly (vector of cassava mosaic viruses throughout Africa), cotton worms, several pests of cashew, and several fruit fly pests of fruits and vegetables.

However, biological control of indigenous pests is much more challenging than the control of exotic pests and tends to be insufficient alone. It often requires integration with one or more approaches, such as host plant resistance and cultural controls, among others. A prime example of this challenge is the control of the whitefly Bemisia tabaci, the vector of the viruses that cause the devastating cassava mosaic and cassava brown streak virus diseases in cassava fields in Africa (J. Legg, this issue). B. tabaci can be controlled with inundative releases of parasitoids and predators in protected and high-value agricultural systems. However, biological control alone has not been sufficient. Other complementary tactics, particularly host plant resistance, are necessary if we are to rein in this pest.

<em srcset=Bactrocera invadens ovipositing on a mango fruit” width=”250″ height=”188″ />
Bactrocera invadens ovipositing on a mango fruit. Photo by IITA

IITA in partnership with the Centre de cooperation internationale en recherche agronomique pour le developpement and Africa Rice has recently demonstrated the usefulness of the weaver ant in fighting off pests of mango and other tree crop pests. A sister species has been used in pest control by the Chinese for thousands of years. The article by Vayssieres et al. (this issue) shows that this native predator works principally by repelling the damaging fruit flies. The effectiveness of this ally has been demonstrated. Now its full potential is being exploited through a campaign to inform farmers how to manage this ant to promote its abundance and provide an additional weapon in the sustainable control of fruit fly pests.

Nearly parallel to the development of biological control with parasites and predators in Africa is IITA and its partners’ pioneering work on the development of microbial agents for the control of a variety of pests and pathogens.

The first pioneering success was the development of the biopesticide Green Muscle®. Based on a naturally occurring fungus Metarhizium anisopliae var. acridum, this natural and now commercial product has proved to be the weapon of choice against a variety of devastating pests, such as the red and desert locusts.

The successes of biocontrol of the mealybug with parasitoids and green mite with predators opened the gate for numerous other programs that relied on arthropod biocontrol agents. The success of Green Muscle® has also given substantial impetus to a variety of other efforts aimed at harnessing the power of naturally occurring microbes to fight harmful pests.

Microbial agents are being developed for pests that are very difficult to control, such as parasitic weeds. IITA’s efforts to rein in the parasitic weed Striga hermonthica or witchweed is paying dividends. Striga attacks maize, sorghum, and millet, often the sole staple crops in many areas of the Sahel of West Africa. Biocontrol agents—host-specific strains of the common pathogen Fusarium oxysporum f. sp. striga—in combination with Striga-resistant/tolerant varieties are giving farmers in SSA hope for controlling a scourge that causes some $7 billion in annual crop losses.

Similarly, IITA and its partners have found strains of the fungus Beauveria bassiana that can serve as a full replacement to toxic pesticides used to control the diamondback moth, a pest that can cause complete loss of cabbage crops if unchecked. This pest has developed resistance to many pesticides and has forced farmers to rely on the excessive application of pesticides that are not even meant for use on food crops, such as cabbage. That treadmill can end with the new microbial agent.

Aflatoxin-contaminated groundnut kernels in Mozambique
Aflatoxin-contaminated groundnut kernels in Mozambique. Photo by IITA

More recently microbial control has taken another innovative and pioneering direction at several IITA locations in SSA. In a twist on the concept of using beneficial arthropods to fight off harmful arthropods, fungi that do not produce mycotoxins were identified and used to exclude toxogenic strains that contaminate stored grains. Similarly, endophytic fungi that grow harmlessly inside the banana plants have been used to impart resistance to pests such as weevils and nematodes that have, in some places, resulted in farmers abandoning banana and plantain production.

The list goes on. Last but not least, entomopathogenic nematodes are being explored for the control of an indigenous pest—the African root and tuber scale—and an exotic pest—the banana weevil.

For as long as there are problems and experienced scientists and staff to deal with emerging problems, IITA will continue to strive to be a leader in the field of biological pest control.

Key to successes
At the heart of these efforts and as the key to this success were fruitful partnerships and sustained donor support. The message: complementary capacity—be it geographic, scientific, or political—is essential for the development and implementation of successful technologies on a continental scale. (IITA’s partners and donors can be found on our Web site at www.iita.org). IITA’s partners are from all corners of the globe and run the spectrum of all research and development institutions. The core are CGIAR sister centers, universities, government (including NARS) and UN agencies, and (more recently) the private sector.

The sustainability of biological control has numerous requirements. Chief among them is donor and institutional commitment followed by the recruitment and retention of highly experienced scientists to lead the development of innovative pest control. All require long-term commitment, because the goal can take a long time to achieve but the payoff is often handsome.

While the mealybug and green mite programs brought biological control to Africa, training of African scientists has been the key to the successful dissemination of the capacity to do biological control. IITA has led this effort in Africa. The continuity and scope of such training will be necessary if we are to emulate past successes.

Of particular significance and another central element in the success has been the correct identification of pests and natural enemies; this is fundamental because it provides knowledge not only on identity but also about origin and distribution, biology, association with other organisms, evolutionary relationships, and other important topics. Without the proper naming and organization of organisms, biological control would be haphazard and chaotic, and can lead to failure and considerable waste in time and resources.

Scientist explains to farmer how aflasafe works on maize. Photo by IITA
Scientist explains to farmer how a biopesticide works on maize. Photo by IITA

Lessons
The scientific lessons learned from past and present efforts are numerous.

Anagyrus lopezi, the parasitoid responsible for the control of the cassava mealybug, is host specific and has an incredible capacity for dispersal (about 350 km per year) and for finding its host, which had been key to its ability to keep mealybug populations at low levels. The parasitoid originated from the LaPlata Valley (Paraguay) where conditions are not like those common in Africa. Nevertheless, A. lopezi proved to be highly adaptable. It quickly established and efficiently controlled the mealybug from the Sahel to the Congo Basin and to the East African Highlands. This example highlights some difficulties in predicting the outcome of biological control introductions that otherwise would eventually prove effective in controlling the target pests while relying on classical criteria for selecting natural enemy candidates.

A similar lesson was drawn from the green mite biocontrol program. Eleven species of predatory mites were introduced into Africa during the exploration phase of the program. T. aripo was the least efficient in terms of predation and efficiency in turning energy from consumed prey into the production of its own offspring. However, it turned out to be best at becoming established and dispersing (> 200 km per year), and in controlling green mite. The key was not its voracity but its ability to use the apical growing point of cassava as a shelter, to be so tuned to cues from its plant and prey to locate them, to use plant-based food for sustenance during periods of low prey abundance, and to have a phenomenal dispersal capacity. This is a landmark lesson: voracity and rate of population growth need not be always the top criteria in selecting effective natural enemies, as by these criteria, T. aripo would not have been selected for introduction into Africa.

The future
Invasive weeds and arthropods continue to hamper development and ravage and disrupt agricultural and natural ecosystems, and doubtless many will continue to make it through porous borders. IITA has been a leader in developing options for controlling the invaders and restoring that balance. While classical biological control will likely continue to be the preferred way to deal with invaders, greater intensification of agricultural production, with its associated reliance on external inputs, necessitates an integrated approach. Biological control will be a component of a package that may include selective pesticides, varietal resistance, attractants and behavioral disruptants, as well as appropriate agronomic practices.

Hans Herren—former IITA scientist and recipient of the World Food Prize—in his foreword to the book on Biological control in IPM Systems in Africa (Neuenschwander et al. 2003, editors) wrote: “Biological control, however, cannot be a substitute for mismanaged plant production, in short, for bad farming. To have access to the full power and potential of biological control, the crop production system needs to be fully integrated in the larger agroecosystem, fulfilling the principles of agroecology. Under such a system, the powers of biological control can best be unleashed, and its synergistic effects with host plant tolerance/resistance, habitat management, and agronomic practices brought to bear maximum impact.”

Farmers field school on IPM in Mali
Farmers field school on IPM in Mali. Photo by IITA

The old and timeless adage—an ounce of prevention is worth a pound of cure—captures the essence of the need and value of preventing the invasion of new species. Key to effective prevention is the development and maintenance of the capacity for quarantine, surveillance and readiness to develop appropriate options to deal with the invaders and limit their impact on African agriculture and the rest of the African ecosystems.

We also need more modeling for predicting the distribution and abundance of pests and their potential natural enemies to guide the development of experimental approaches to pest problems. Climate change can affect pests and their natural enemies in many ways. Modeling, along with long-term monitoring and demographic studies can be useful approaches to determining the effects of climate change on pests and their natural enemies.

Greater emphasis is needed on the use of the modern tools of molecular biology to trace the origin of invaders and use that knowledge to search for natural enemies where the invaders originated. Taxonomic services (and their associated collections) have been and will continue to be one of the essential tools in successful programs. In addition—and among their many uses—biodiversity collections can often serve as the first stop for foreign exploration against pests and weeds on other continents.

The targets will doubtless change. Highly trained and experienced staff will always be necessary to address the new targets. We also need to continue to strengthen existing links and develop new complementary partnerships. Training of local staff and African scientists is essential for them to become leaders in biological control in their countries, capable of running their own programs.

The younger generation is the one to find the solutions to future threats to the continent’s food security and livelihoods of its inhabitants. Improvements in the health of ecosystems will go a long way in protecting and promoting biodiversity. Biological control, if carefully developed and implemented, is the greenest approach to saving farmlands, waterways, savannas, and forests from the ravages of pests.

Jacob Hodeba Mignouna: Leading the way in science

Mignouna
Jacob Hodeba Mignouna

Jacob Mignouna is a molecular biologist/biotechnologist with an MSc degree in chemical engineering and a PhD in molecular biology and genetics, both from the Catholic University of Louvain, Belgium.

He joined IITA in 1992, as a research scientist-biotechnologist. He led the Biotechnology Unit and developed and implemented a research program on the use of molecular genetic tools to improve food crops and efficiently manage crop genetic resources.

He was a distinguished Frosty Hill Research fellow and had worked as visiting scientist at the Institute for Genomic Diversity, Cornell University, Ithaca, New York; Research Associate Professor of Biotechnology and co-Director of USAID’s Farmer-to-Farmer program in East Africa at Virginia State University, Petersburg, Virginia; and Biosafety Consultant for the USAID Program for Biosafety Systems (PBS), International Food Policy Research Institute (IFPRI), Washington D.C., USA.

As Technical Operations Manager at African Agriculture Technology Foundation (AATF), he identifies opportunities for agricultural technology interventions, assesses the feasibility and probability of success of project concepts, identifies sources of appropriate technologies, negotiates their access and deployment, and provides overall leadership in the implementation of AATF’s project portfolio.

farmers-meetingPlease describe AATF’s work and your work.
AATF is a not-for-profit organization that facilitates and promotes public-private partnerships for the access and delivery of appropriate proprietary agricultural technologies for use by resource-poor smallholder farmers in sub-Saharan Africa (SSA).

The Foundation is a one-stop-shop that provides expertise and know-how that facilitates the identification, access, development, delivery, and use of proprietary agricultural technologies.

AATF works toward food security and poverty reduction in SSA, and its structure and operations draw upon the best practices and resources of both the public and private sectors.

It also contributes to capacity building in Africa by engaging African institutions to work in partnership with others.

AATF strives to achieve sustainable impact at the farm level through innovative partnerships that bring together players all along the food value chain—from smallholder farmers to national agricultural systems, regional and international research organizations, and technology developers.

Currently, AATF is working on biotechnology projects focusing on maize, cowpea, banana, rice, and sorghum—all important crops in Africa. We are also looking at ways to address aflatoxin contamination in peanuts and cereals and processing of cassava.

How did the AATF and IITA partnership come about?
In 2004, IITA approached AATF seeking to access candidate genes conferring resistance against banana bacterial wilt (BXW). IITA had already established contact with Academia Sinica, Taiwan, which held patents to the technology and wanted AATF to negotiate for a license to the ferrodoxin-like protein (pflp) and hypersensitive response assisting protein (hrap) genes from the institute.

In August 2005, IITA, Uganda’s National Agricultural Research Organisation (NARO), and AATF convened a two-day consultative meeting at which stakeholders, including other national research institutes from the Great Lakes region, including IRAZ and other NARS in the region, drafted a project concept note on developing banana bacterial wilt-resistant germplasm.

Soon after, AATF approached Academia Sinica, Taiwan, to license the pflp and hrap genes to it on humanitarian basis.

The initiative has since grown into a full-fledged project designed to enable smallholder farmers in Africa have access to disease-resistant high-yielding banana developed from East African highland varieties.

The project has two components. One focuses on developing transgenic varieties using the acquired technology and the other on improving the capacity of institutions in the region to produce high-quality disease-free planting materials using tissue culture technique.

AATF coordinates the project, including providing support in management of intellectual property rights and regulatory issues, while IITA leads the research, working with Academia Sinica and various institutions, including NARO-Uganda and IRAZ (the national research institution of Burundi), and public and private tissue culture laboratories in Kenya, Tanzania, Uganda, Burundi, Rwanda, and DR Congo.

Through the collaborative research, five banana cultivars—Kayinja, Nakitembe, Mpologoma, Sukali Ndizi, and Nakinyika—have been transformed using an Agrobacterium-mediated system. Several transgenic lines have been produced and tested in vitro by artificial inoculation with the pure Xanthomonas campestris pv. musacearum (Xcm) bacterial culture. Some of the promising lines showed no bacterial wilt symptoms. These plants were further analyzed and confirmed to have the transgene pflp integrated into the banana genome.

With progress on banana transformation well under way, AATF will soon commission a biosafety study. The findings will inform stakeholders as they develop a roadmap for the various processes required for regulatory approvals as the project progresses through the product development pipeline.

Farmers preparing cassava leaves for silage. Photo by S. Kolijn
Farmers preparing cassava leaves for silage. Photo by S. Kolijn, IITA

Please share your insights on collaboration and partnership.
First, collaboration works well if there is a clearly articulated and shared need for joint effort.

Secondly, such partnerships work best if roles and responsibilities are well defined. Work in the banana project is governed by a Memorandum of Association that recognizes the capacities of the partner organizations and facilitates each to contribute optimally to the project.

Also important is the need to bring on board potential partners early enough so that they can provide their input into the project design right from the concept stage. In this project, and generally in all AATF initiatives, we have found comprehensive consultations with a wide range of stakeholders, especially at the formative stage to be a critical success factor.

Third is information flow. Building a communication strategy into the project design ensures that the information needs of partners and external stakeholders are adequately met.

Capacity building is core to all AATF partnerships because of the key role it plays in moving the technologies through the entire food value chain, including scaling up of technologies. In this project, the hub of banana transformation work is at Kawanda, where IITA researchers are working with scientists from national research systems and jointly carrying out the transformation work. This kind of collaboration ensures that staff of national agricultural research institutes in the target countries provide continuity of work in their home country.

Another important aspect of partnership is focus on the smallholder farmer. We have found that having a shared commitment to improve the livelihoods of resource-poor farmers—a clear statement about the ultimate focus of our work—enhances stakeholders’ commitment to project activities.

Then, of course there is the need to have clear negotiated ways to deal with conflict, ensure accountability, and other governance issues.

How did AATF handle the licensing agreement for using the genes for developing resistance to Xanthomonas wilt in bananas?
AATF typically follows a strategy in which it takes the role of the principal and “responsible party” in facilitating public-private partnerships. AATF has entered into licensing agreements to access and hold proprietary technologies and to ensure freedom to operate (FTO) for all the components of the technologies. The Foundation then sublicenses partner institutions to carry out research and adapt technologies for regulatory compliance, and to produce and distribute the technologies. After signing the relevant agreements allowing use of the technology, AATF and partners are guided by a business plan that spells out the roles of each partner and how the technology will be used.

As the principal party, AATF monitors compliance with the requirements of sublicenses to minimize the risk of technology failure, and facilitates the work of appropriate partner institutions to ensure that links in the value chain are connected and result in technology products that reach smallholder farmers.

How would this research impact on banana producers and consumers in Africa?
Millions of people across the East African highlands depend on banana for their livelihoods, directly for food and smallholder producers for the market or as traders and other players in the crop’s value chain. Since banana Xanthomonas wilt broke out in the region, it has caused losses estimated at over US$500 million in Uganda, eastern DR Congo, Rwanda, Kenya, and Tanzania.

In parts of Uganda, where the crop is a staple, some families reported that their banana production had decreased by up to 80%. Given the severity of losses caused by BXW and the fact that the effectiveness of existing remedies is limited, development of disease-resistant varieties will have a huge impact on livelihoods. The benefits can be multiplied many times over by making available clean planting materials to enable farmers to rapidly expand their production.

Increased production will lead to higher incomes for families from sale of the crop, including to the vastly untapped European and American markets, now dominated by South American countries, which account for 60% of the global banana trade.

Scientists inteviewing cassava and maize farmers. Photo by K. Lopez
Scientists inteviewing cassava and maize farmers. Photo by K. Lopez, IITA

What are some of the biggest constraints to adoption of biotechnological tools or products in Africa?
I believe that properly applied agricultural biotechnology holds the key to food security in Africa. Molecular genetics tools should be used not only to improve crops but also to create a better understanding of the abundant diversity of African genetic resources for food, feed, medicine, etc. The biggest constraints to adoption of biotech tools include limited resources—both infrastructural and in terms of trained scientists and other personnel.

Some African countries also lack a regulatory environment conducive to biotech research and development. Although there have been positive changes over the past couple of years, a lot more needs to be done in these areas, including developing regulations to operationalize biosafety laws.

What could be done to take advantage of opportunities that current agricultural technologies provide and harness them for the development of African agriculture or the improvement of food security in SSA?
There are various ways but a key one is by building partnerships, such as those AATF facilitates, that can help access needed technologies, move them from product development and into the hands of farmers. This means different organizations working together to identify and resolve farmer constraints through pooling of available resources where necessary.

We also need to rapidly enhance our capacity to use biotech research. African governments and institutions need to come together and harness their various strengths to develop biotech infrastructure on the continent.

This means training more high-level scientists, equipping laboratories that can serve as centers of excellence and strengthening collaboration among African institutions and between them and research centers and universities abroad.

Lack of awareness about biotech is a major challenge. There is a need for well-designed communication campaigns not only to increase awareness and knowledge of biotechnology, but to increase public acceptance and use of technologies.

You used to head the Biotech Unit at IITA. Please tell R4D Review about your experiences in using biotechnology tools then.
The focus of the Biotechnology Unit, which comprised seven scientists and 45 support staff, was to use the tools that were then available for improving IITA mandate crops. Our work was mainly in two areas. One was developing genetic markers for the characterization of genetic resources, molecular breeding for pests and disease characterization, and exchange of germplasm. The other area was genetic engineering, where we applied tools to address intractable pests and diseases, such as insects that affect cowpea, viral and fungal diseases affecting plantain and banana and cassava mosaic disease. We also addressed diseases and pests in yam, another important food.

What are your aspirations for Africa?
My vision is to see Africa embrace all available tools, including biotechnology and develop the capacity to use them to produce enough food and improve the livelihoods of communities across Africa.

Contact: h.mignouna@aatf-africa.org

Erostus Njuki Nsubuga: Lessons on partnership

AGT CEO and Managing Director Erostus Nsubuga
AGT CEO and Managing Director Erostus Nsubuga

R4D Review interviewed Erostus Njuki Nsubuga, the chief executive officer and managing director of Agro-Genetic Technologies Ltd (AGT), to get his insights on the IITA-AGT partnership. AGT is the first and only private commercial tissue culture (TC) laboratory in Uganda and so far the biggest single supplier of banana TC planting material in East and Central Africa. It produces up to 8 million tissue culture plantlets per year, of which 1 million are banana plants.

Nsubuga wants to see AGT become well established and profitable by increasing its capacity to provide the region with quality TC planting material at affordable prices and introducing other services such as plant and soil analysis, and produce organic fertilizers. His dream is for AGT to become a one- stop shop that provides total solutions to farmers.

Nsubuga was born in Uganda and spent his early years there. Because of the war, he and his family had to move to other countries in Africa and Europe. He started living on his own at 16, studying in Europe and USA for 24 years to obtain an MSc (Agriculture) and MBA (International Marketing). He worked in international companies and managerial positions for over 20 years but his dream was always to come back, to help his mother who had survived all the wars, to sustain himself and his family, and to contribute to the development of his people and country.

What made you establish AGT?
I had completed one contract and was about to start a new job when I decided to start a TC laboratory at my house. I employed and trained two people to produce TC plants out of my kitchen while I was traveling. At that time (2001–02) banana and coffee wilt diseases were spreading like wildfire in Uganda. It was easy to start with these two crops as there was great demand for disease-free planting material to reduce the spread of diseases and restore healthy plantations. Over time, using my own finances, AGT built a state-of-the-art TC facility and we grew significantly. Our technical team now includes five university graduates and a retired professor. Degree students from Makerere University have been doing their internships at AGT’s laboratory with their programs embedded in our production line.

How did the AGT and IITA partnership come about?
It started when Dr. Thomas Dubois called me out of the blue. IITA was looking for a commercial enterprise to start testing and producing its endophyte-enhanced plants. Under a mutual agreement, AGT and IITA have worked on fine-tuning the enhancement of TC plants with endophytes. We identified and established on-farm trials together, using the same farmers. In the short run, IITA assisted us with laboratory chemicals and AGT also benefited from publicity. In the longer run, production of endophyte-enhanced TC material would be greatly beneficial to AGT and other commercial producers in the region. Now that the original project has expired, we are trying to get this unique product commercialized to supply farmers facing high pest and disease pressure.

Please give some insights on public-private collaboration.
Collaboration can be very important in developing and disseminating research products. For IITA, it has forced them to think commercially from the onset. A good example has been the experimental protocol for endophyte inoculation. After piloting it in my lab, IITA quickly abandoned the use of a nutrient solution in favor of fertilizer-amended soil along the lines of the system used in commercial nurseries. Such partnerships should be developed as early as possible, especially for a technology such as this. This would help AGT to build up its technical, human, and financial capacity to take on the research products once they reach commercialization. Also a very clear agreement has to be drafted and this is sometimes a balancing act.

How could IITA improve its relationship with the private sector?
AGT indicated to IITA that it was open to other research products but wanted to be involved at an early stage. This is what we call a demand-driven research agenda where the consumer is sure of getting research products through private sector involvement. We are now backstopping a socioeconomic study looking at full commercialization of our nurseries in Uganda and Rwanda. At present AGT sells mainly through NGOs and institutions. Direct marketing to farmers would be better.

What lessons have you learned from the partnership with IITA and others?
It is great that research organizations such as IITA have realized the role of private sector involvement in agricultural research and in the product value chain. Such partnerships are relatively new and we still have much to accomplish. Personally, I feel many governments and international research institutions, even IITA, are working too much for the donors, not the farmers. We should tell the donors what needs to be funded. More impact assessment is needed on some research products.

Any suggestions for future collaboration or collaborators?
I hope IITA can do more demand-driven research by including the private sector in the development of research products as early as possible with specific roles for each partner clearly defined.

What do you think makes AGT successful?
I have a professional approach and commitment, with many years of experience in agriculture and entrepreneurship and good relationships, local and international. AGT started when diseases such as banana bacterial wilt and coffee were at their peak, so I was in the right place at the right time.

How else could development organizations and private entities such as AGT help farmers and consumers?
AGT is getting farmers involved in production, distribution, and training by establishing banana nurseries and demonstration gardens owned by local farmers. The farmer then becomes the AGT distributor for that community and the nursery the focal point for training others in modern agricultural practices.

What is your dream for Uganda?
Uganda is the second largest producer but seventy-fifth in banana exports. The Government and all development partners should industrialize this crop and thus lift many out of poverty.

Any thoughts about the world food crisis, food security, GMOs, or development in general?
African countries are the poorest in the world today with many problems. We urgently need biotechnology tools, including GMOs, to address problems. We should not waste time blaming others for creating poverty and hunger but make efforts ourselves to get out of the rut. I still have far to go but I am contributing to the well being of farmers in Uganda and the whole region.