GHU: Gateway for the safe exchange of germplasm

Lava Kumar,

Seed testing. Photo by L. Kumar, IITA.
Seed testing. Photo by L. Kumar, IITA.

International exchange of germplasm: an essential step for sharing international public goods
Since its inception in 1967, IITA has been actively involved in the collection, conservation, and use of the plant genetic resources of important crops, such as banana and plantain, cassava, cowpea, maize, soybean, and yam, and their wild relatives from Africa and other parts of the world. Using this germplasm, IITA’s crop improvement programs, based in several locations in sub-Saharan Africa, have been developing high-yielding, nutritionally superior crop varieties resistant to pests, diseases, and drought.

These are regularly exchanged with national and international programs for crop improvement and agriculture development.

Germplasm safety matters
As part of the measures to prevent the inadvertent spread of pests through exchange activities, IITA has established a Germplasm Health Unit (GHU). The GHU is responsible for the production, maintenance, and exchange of healthy (pest-free) germplasm in accordance with the international requirements on plant protection. These are covered by the International Plant Protection Convention (IPPC) under the auspices of FAO, and those set up by the Inter-African Phytosanitary Council (IAPSC) and National Plant Protection Organizations (NPPOs) to safeguard agriculture and natural resources from the risks associated with the entry, establishment, or spread of plant pests.

Scheme for phytosanitary management of germplasm.
Scheme for phytosanitary management of germplasm.

GHU (a) facilitates germplasm exchange in support of IITA’s international crop improvement programs; (b) inspects for pests and certifies the health status of germplasm; (c) ensures compliance with the national regulations on plant introductions and exports; (d) guards against the introduction of exotic pests into countries where they do not occur; (e) ensures phytosanitary management of plant genetic resources conserved in the IITA genebank; and (f) provides capacity building and awareness creation on phytosanitary measures.

GHU operates within the framework of the procedures for the introduction and export of germplasm established by the government of the host country in which IITA’s operations are based. For instance, all the exchange operations of IITA’s activities in Nigeria are organized in accordance with the legislation of the Nigerian Agriculture Quarantine Service (NAQS) of the Federal Department of Agriculture, Nigeria.


Ensuring exchange of clean germplasm
Crops researched at IITA comprise those propagated through botanical seeds or true seeds (maize, soybean, cowpea, and other legumes of importance to African farming) and crops that are propagated through vegetative propagules, including stems (e.g., cassava), tubers (e.g., yam), and in vitro plants (e.g., banana and plantain, cassava, and yam).

Each type of germplasm demands a unique set of procedures for assessing the health status of the material. At IITA, this work goes on from production to postharvest to the point when the material is dispatched.

Plant material generated for international exchange is inspected with the technical officers of NPPO during the active growth stage in the field or screenhouse to ensure the selection of pest-free material. The sorted materials (seeds or vegetative propagules) are then brought to the GHU laboratories for critical inspection for the presence of pests. Detection methods used for this purpose include visual inspection of dry seeds, seed washing, agar and blotter tests, seed soaking, and seedling symptom tests which aid in identifying any pest-infested material. Additional techniques are used for pest identification including culturing techniques, microscopy, and biochemical analyses of samples by enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and genomic sequencing. Only materials that are free of the regulated and unregulated quarantine pests are released for international exchange.

GHU also monitors for genetically modified organisms (GMO) to comply with the Cartagena biosafety protocol, also under the regulation of NPPOs. This is done mainly by seeking an additional declaration from the exporting parties on the GMO status of the planting material as stipulated in the conditions of the import permit issued by the NPPO. Diagnostic capacity exists to monitor germplasm for traces of GMOs by PCR assays, targeting constitutive elements of transgene constructs, such as promoters of Agrobacterium tumefaciens or Cauliflower mosaic virus 35S gene, that are widely used for generating transgenic plants.


Complying with regulations
Germplasm exchange activity commences with the application of a permit from a host country for germplasm import (for use in IITA’s R4D programs) or germplasm export (to partners, collaborators and other stakeholders, including IITA’s missions in other countries). This is an essential process under the Convention of Biological Diversity (CBD) treaty that regards biodiversity as a national treasure, and requires authorization from the respective governments for free exchanges. Every country has a nodal agency tasked with issuing permits for the movement of germplasm.

In addition, GHU applies for phytosanitary certificates (PC) for the export of material. The PC is issued by NPPO after the condition has been satisfied that the material being exported meets the phytosanitary standards of the IPPC and the importing country. GHU invariably complies with national regulations in obtaining these two documents for all seeds or plant materials sent or received. Similarly, when material is imported it is subjected to post-entry inspection to ensure its compliance with the conditions specified in the import permit. Depending on the need, material is held in the post-entry isolation facility until the necessary clearances are obtained. Material that satisfies all the conditions is released for IITA’s use.

Germplasm export and import events facilitated by GHU to various countries around the world. Source: L. Kumar, IITA.
Germplasm export and import events facilitated by GHU to various countries around the world. Source: L. Kumar, IITA.

From 2005 to 2010, GHU, from IITA‘s Ibadan Station in Nigeria in liaison with NAQS, has facilitated about 492 exchanges, 157 imports, and 335 exports of crop and other plant material to 69 countries, 34 of which are in Africa (Fig. 1). USA, India, Colombia, Mexico, and Japan are among the top 5 non-African countries. Within Africa, the top 5 countries with which IITA has exchanged germplasm are Bénin, Ghana, Cameroon, Kenya, and South Africa. Each of these countries has specific legislation. However, procedures for health monitoring have the same underlying principle, i.e., the exclusion of pests and the prevention of pests from spreading.


Phytosanitary protection of genetic resources
GHU ensures the phytosanitary management of the germplasm of food crops (about 27,000 accessions) conserved in the IITA genebank and also in the in situ germplasm collections of breeding programs. Germplasm conserved in the genebank is systematically evaluated for its health status and clean germplasm is conserved for distribution by IITA’s Genetic Resources Center (GRC).

Contributing to phytosanitary capacity development in SSA
Together with the Virology and Molecular Diagnostic Unit and GRC at IITA, Ibadan, GHU augments diagnostic procedures for monitoring pests in germplasm; develops a reference pest collection and DNA bank to use as controls; establishes DNA barcode databases of the pests of African food crops; and augments procedures for salvaging clean germplasm.

Information dissemination through exhibits and hands-on demos, IITA Open Day. Photo by IITA.
Information dissemination through exhibits and hands-on demos, IITA Open Day. Photo by IITA.

GHU plays an active role in developing the skills of NPPOs in the testing for germplasm health and the production of pest-free germplasm via training courses and short-term assignments. It also creates awareness on quarantine pests, quality standards for planting material, and the sanitary and phytosanitary (SPS) measures.

Knowledge and technologies developed are disseminated through training programs, the publication of protocol manuals, information flyers and a website. The unit also collaborates with NPPOs and IAPSC as a technical partner to develop phytosanitary capacity in Africa.


Maria Ayodele: Invest in people

Maria Ayodele. Photo by IITA

Dr Maria Ayodele is from Cameroon. She set up and has been in charge of IITA’s Germplasm Health Unit (GHU) since 1998. IITA recognizes that germplasm health is a very important concern, and is proactive about ensuring the production of good quality and healthy plants by guarding against the introduction of exotic seed-borne pests, and preventing their spread to collaborating countries and partners. The GHU has thus adopted strict phytosanitary measures and has facilitated the movement of thousands of items of germplasm materials for its mandate crops every year.

Dr Ayodele obtained her first degree in the Netherlands on tropical agriculture, MSc in plant bacteriology from the University of Aberdeen, Scotland, and PhD in plant pathology, University of Ibadan, Nigeria. She also has a Diploma in Bible Studies and a Certificate in Discipleship, and is an Assistant Pastor of the Redeemed Christian Church of God. Dr Ayodele is a mother of six and several other children in the Lord; she specializes in mothering and welfarism.

Please tell R4D Review about yourself.
I am a plant pathologist by training, specializing in bacteriology and mycology (fungi), but also in seed pathology, phytosanitary regulations, and capacity building. I take care of plant health testing and diagnostics, and liaise with breeders and other scientists for test results, and with national partners for phytosanitary requirements and plant quarantine.

Please describe your work. What is your main research interest?
As a research support scientist, I help IITA in testing seeds for import or for sending to partners by making sure that they are disease-free to prevent the spread of exotic pests and diseases. I do plant health testing and grow seeds or other plant parts, such as leaves, stems, or tubers, in a containment facility; I inspect the plants in the field or in the genebank; take care of the bacteriology and mycology screening; send the materials to the Virology Unit for viral testing; compile all the test results and send them to the scientists; and make sure that all the proper documentation in terms of phytosanitary permits or requirements are provided for each crop and for each cooperating country.

I liaise with the plant protection and quarantine service organizations of partner countries where IITA sends or imports seeds or other plant materials for use in research. With FAO, I provide technical backstopping in plant health and phytosanitary regulation, and also capacity building for SSA partner countries, including Nigeria, Bénin, Burkina Faso, Gabon, Gambia, Guinea Bissau, Mali, Togo, Cote’Ivoire, Niger, and Senegal. For example, since some partners do not have the capacity for plant health diagnosis, IITA works with the Plant Quarantine Service (PQS) or the national plant protection organizations in doing the testing, with the PQS doing their own inspection. Otherwise, I travel to where the test plants are and inspect them.

Last year, I was part of a team that conducted training on pest risk analysis and the safe movement of germplasm for partners in the national programs of Tanzania, Zanzibar, Uganda, Kenya, and Zambia, Burundi, Malawi, and DR Congo.

I also do some research, specifically in the areas of classification and characterization of anthracnose for yam, morphological characterization of gray leaf spot in maize, and the establishment of pest-free areas for multiplying germplasm materials.

Maria Ayodele checking yam plants. Photo by IITA

What are some of the highlights of your career at IITA?
I have enjoyed the capacity building part—coordinating training and sharing my knowledge with partner-participants and investing in people. I maintain links with participants who start as students and later become colleagues, and keep communication lines open. They can always come back to me with questions. My relationship with them is based on honesty and mutual respect. This approach has helped such that I have never had any difficulty when asking for plant quarantine documentation.

What is your work philosophy?
I believe that people should be happy with what they are doing, or not do it at all. I like my job, I like what I am doing, and I am happy transferring knowledge and building the capacity of partners in plant health testing and diagnostics.

It is important to me that the type of job that I do motivates me. That way, I get complete satisfaction. I want to see that the client is happy, so it is important to work together with clients—work with people, work with results; in short, be self-motivated. Getting good results makes people happy, and I make sure that I deliver on those results.

I am most happy when I am in the field—I see the challenges there—and they make me think and look for solutions to problems; for example, why are this year’s plants different from those of last year? Was it the climate?

What lessons or insights do you want to share with colleagues?
I work a lot with partners in the national programs and this is very challenging because of differences in capacities. When I work with my “students”, I usually break down information and bring it to their level. This means simplifying language to make science, even common concepts, understandable. I provide hands-on exercises so participants are exposed to the practical side; for example, I bring them to the field to do actual disease diagnosis.

I am now working on a practical manual on field diagnosis for each IITA crop. This is intended for students of agriculture, universities and colleges, extension workers, farmers, and partners. Our scientists should be encouraged to produce simple monographs on their research breakthroughs, documents that are easily affordable and accessible to our clients. At the moment, our scientists write mainly for academic journals. Of course, we know that many of our clients have no capacity to pick up information in those journals.

When I approach work, I do not look only at the problems. Yes, I find out what the weaknesses are, but I focus on the strengths and think of solutions. I use this approach for everything. Not everything can be bad. Negativity is a wrong thing in life, so it is best to find the positive aspects in people or situations. Once you get a working system, look at what needs to be changed. Oh, and do not criticize—be constructive.

Lastly, we should also be resourceful and show our initiative at work.

You would be retiring from IITA soon. What would you want colleagues (or partners) to remember you by?
I want colleagues or partners to remember me as a good teacher and effective communicator—a colleague who is results-oriented, or who works until she gets results. But you should be asking my colleagues about this, not me!

What do you wish for Africa?
My wish is for Africa to have the phytosanitary structures in place where feasible, to prevent the introduction of exotic pests and diseases that are dangerous to African crops, and to assist and sustain agricultural development for food security and the prevention of genetic erosion. We can sustain agriculture in Africa if we protect it by preventing the introduction of pests accompanying plant imports—unintentionally introduced—and avoiding the spread and establishment on alternativee hosts.

Would you like to share some personal details?
Although I am an extrovert, I am a very private person. So, take what you see, and whatever you don’t see, don’t bother to look for it.