Effective commercial products for farmers

Martin Jemo, m.jemo@cgiar.org, Cargele Masso, Moses Thuita, and Bernard Vanlauwe

Farmer screening soybean varieties in Kabamba, DRC. Photo by IITA
Farmer screening soybean varieties in Kabamba, DRC. Photo by IITA

Background and issues
More and more commercial products, such as biofertilizers, biopesticides, and chemical agro-inputs, are being sold to smallholder farmers in sub-Saharan Africa (SSA). However, their quality and efficacy, especially for the microbiological products, are not properly evaluated before they are commercialized, because regulations are lacking or inadequate. There is a crucial need to implement appropriate regulatory mechanisms.

When microbiological products are used as directed, they are generally more environmentally friendly than synthetic fertilizers. Also, they mainly improve soil fertility by either biological nitrogen fixation (BNF) (rhizobium inoculants) or by increasing the availability or uptake of plant nutrients already in the soil (e.g., phosphorus- solubilizing Pseudomonas putida). Unlike microbiological products, synthetic fertilizers N and P chemical fertilizers) are sometimes associated with nutrient loss to the environment causing greenhouse gas emissions or eutrophication. Hence, one of benefits of using microbiological products in integrated soil fertility management (ISFM) is to preserve the natural resource from degradation, while sustaining adequate crop production.

The goal of the Commercial Products (COMPRO-II) project is therefore to improve crop yields, improve food security, and minimize the negative impacts of bad or inadequate agricultural practices on the environment.

Figure 1. Screening framework of commercial products in Ethiopia, Kenya, and Nigeria under COMPRO-I.
Figure 1. Screening framework of commercial products in Ethiopia, Kenya, and Nigeria under COMPRO-I.

The project is built on public-private partnerships to develop effective laws and regulations for biofertilizers and other agro-inputs in SSA. It is expected that the large-scale impact of this project will be a significant reduction of inefficacious agro-inputs in the marketplace, resulting in improved crop yields.

Product screening
Products evaluated under the COMPRO project are grouped into three categories: I: rhizobium inoculants, II: other microbial inoculants, and III: non-microbiological products. However, COMPRO-II mainly focuses on categories I and II.

The product evaluation has three key steps: laboratory/greenhouse testing, field testing, and the application of appropriate ISFM (Fig. 1). An additional step consists of the scaling up of the most  promising products retained after the three key steps.

Overview of COMPRO-I results
Over 100 commercial products from the three categories were evaluated under field conditions in Kenya, Nigeria, and Ethiopia from 2009 to 2011 in the first phase of the project (COMPRO-I). A significant economic benefit to farmers was found for only a few products (Table 1). On average, the benefit–cost ratio (BCR) for rhizobium inoculants in soybean was found to be US$4.1/dollar and maize seeds coated with plant nutrients resulted in a BCR of $4.6/ dollar. A BCR of 2.5 is considered satisfactory for the adoption of the technology. The photo below also shows a significant growth improvement for faba bean following treatment with a rhizobium inoculant.

Table 1. Yield increase and benefit-cost ratio of selected products evaluated under various field conditions in Ethiopia, Kenya, and Nigeria.
Table 1. Yield increase and benefit-cost ratio of selected products evaluated under various field conditions in Ethiopia, Kenya, and Nigeria.

Analytical tools
A better understanding of the fate and dynamics of the strains in microbiological products after their application to the soil requires adequate analytical tools. In COMPRO-I molecular tools to detect the Mitochondrial Large Subunit (mtLSU) DNA of the isolate Glomus intraradices in commercial products (e.g., Rhizatech) was developed (Fig. 2). The yield increase following the application of Rhizatech was associated with faster root colonization by arbuscular mycorrhizal fungi (AMF) as determined by the mtLSU DNA tool.

COMPRO-II is further investigating the information provided by a certain region of AMF DNA (mtLSU) and the use of Real Time PCR approach to discriminate different species and isolates of AMF. For example, such tools will be used to determine factors that control BNF in cowpea, a crucial food crop, to develop appropriate inoculants for the benefit of smallholder farmers in Africa.

Figure 2. Electrophoresis gel showing fragments amplified with “INTRA” primers targeting ribosomal DNA of <em/>Glomus intraradices.
Figure 2. Electrophoresis gel showing fragments amplified with “INTRA” primers targeting ribosomal DNA of Glomus intraradices.

Future plans
Based on the economic analysis, a relatively low percentage of the commercial products evaluated under COMPRO-I showed a significant benefit to smallholder farmers. Hence, there is a need to implement adequate regulations to prevent the proliferation of inefficacious products in the marketplace and also to disseminate the most promising products by increasing farmers’ awareness about them. Such a goal can be reached only when adequate resources are available. COMPRO-II intends to address those issues based on the lessons learned from COMPRO-I. Scaling-up of efficacious microbiological products will not only contribute to improved crop yields, increased food security, and reduced rural poverty, but will also, when used in adequate ISFM, contribute to preventing agricultural land degradation caused by a lack of agricultural inputs or the heavy application of chemical fertilizers.

A farmer shows inputs used to get the healthy maize crop. Photo by FIPS
A farmer shows inputs used to get the healthy maize crop. Photo by FIPS

Inadequate crop production systems generally result in degraded agroecosystems and reduced crop yields, and therefore have negative impacts on NRM. Biofertilizers are considered environmentally friendly and, when properly used, contribute to improved soil fertility (e.g., BNF and phosphorus availability), and preserve natural resources. However, in SSA, many smallholder farmers are not familiar with those products, while regulations are virtually non-existent in many countries. The COMPRO project intends to address those gaps by: (1) screening commercial products including biofertilizers through a stringent scientific scrutiny, (2) communicating information on, and disseminating products proven best or promising, and promoting ISFM, (3) developing adequate regulations to ensure the safety, efficacy, and quality of commercial products, and (4) building the capacity of countries in SSA to implement and enforce such regulations.